Suppr超能文献

使用强化学习的实验性半自主特征值求解器

Experimental semi-autonomous eigensolver using reinforcement learning.

作者信息

Pan C-Y, Hao M, Barraza N, Solano E, Albarrán-Arriagada F

机构信息

International Center in Quantum Artificial Intelligence for Science and Technology (QuArtist) and Physics Department, Shanghai University, Shanghai, 200444, China.

Department of Physical Chemistry, University of the Basque Country UPV/EHU, Apartado 644, 48080, Bilbao, Spain.

出版信息

Sci Rep. 2021 Jun 10;11(1):12241. doi: 10.1038/s41598-021-90534-7.

Abstract

The characterization of observables, expressed via Hermitian operators, is a crucial task in quantum mechanics. For this reason, an eigensolver is a fundamental algorithm for any quantum technology. In this work, we implement a semi-autonomous algorithm to obtain an approximation of the eigenvectors of an arbitrary Hermitian operator using the IBM quantum computer. To this end, we only use single-shot measurements and pseudo-random changes handled by a feedback loop, reducing the number of measures in the system. Due to the classical feedback loop, this algorithm can be cast into the reinforcement learning paradigm. Using this algorithm, for a single-qubit observable, we obtain both eigenvectors with fidelities over 0.97 with around 200 single-shot measurements. For two-qubits observables, we get fidelities over 0.91 with around 1500 single-shot measurements for the four eigenvectors, which is a comparatively low resource demand, suitable for current devices. This work is useful to the development of quantum devices able to decide with partial information, which helps to implement future technologies in quantum artificial intelligence.

摘要

通过厄米算符表示的可观测量的表征是量子力学中的一项关键任务。因此,本征解算器是任何量子技术的一种基本算法。在这项工作中,我们使用IBM量子计算机实现了一种半自动算法,以获得任意厄米算符本征向量的近似值。为此,我们仅使用单次测量和由反馈回路处理的伪随机变化,从而减少系统中的测量次数。由于存在经典反馈回路,该算法可被纳入强化学习范式。使用此算法,对于单量子比特可观测量,我们通过大约200次单次测量获得了保真度超过0.97的两个本征向量。对于双量子比特可观测量,对于四个本征向量,我们通过大约1500次单次测量获得了保真度超过0.91的结果,这是相对较低的资源需求,适用于当前设备。这项工作对能够利用部分信息进行决策的量子设备的开发很有用,这有助于在量子人工智能中实现未来技术。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4950/8192530/71105f93bace/41598_2021_90534_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验