Suppr超能文献

基因组选择中的幽灵上位性:上位性模型的预测能力研究

Phantom Epistasis in Genomic Selection: On the Predictive Ability of Epistatic Models.

机构信息

Universidad de Buenos Aires, Facultad de Agronomía, Buenos Aires, Argentina

International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico.

出版信息

G3 (Bethesda). 2020 Sep 2;10(9):3137-3145. doi: 10.1534/g3.120.401300.

Abstract

Genomic selection uses whole-genome marker models to predict phenotypes or genetic values for complex traits. Some of these models fit interaction terms between markers, and are therefore called epistatic. The biological interpretation of the corresponding fitted effects is not straightforward and there is the threat of overinterpreting their functional meaning. Here we show that the predictive ability of epistatic models relative to additive models can change with the density of the marker panel. In more detail, we show that for publicly available Arabidopsis and rice datasets, an initial superiority of epistatic models over additive models, which can be observed at a lower marker density, vanishes when the number of markers increases. We relate these observations to earlier results reported in the context of association studies which showed that detecting statistical epistatic effects may not only be related to interactions in the underlying genetic architecture, but also to incomplete linkage disequilibrium at low marker density ("Phantom Epistasis"). Finally, we illustrate in a simulation study that due to phantom epistasis, epistatic models may also predict the genetic value of an underlying purely additive genetic architecture better than additive models, when the marker density is low. Our observations can encourage the use of genomic epistatic models with low density panels, and discourage their biological over-interpretation.

摘要

基因组选择使用全基因组标记模型来预测复杂性状的表型或遗传值。其中一些模型拟合标记之间的互作项,因此被称为上位性。相应拟合效应的生物学解释并不直观,存在过度解释其功能意义的风险。本文表明,相对于加性模型,上位性模型的预测能力随标记面板密度的变化而变化。更详细地说,我们展示了对于公开的拟南芥和水稻数据集,在较低标记密度下可以观察到上位性模型相对于加性模型的初始优势,但随着标记数量的增加,这种优势会消失。我们将这些观察结果与关联研究中报告的早期结果联系起来,这些结果表明,检测统计上位性效应不仅可能与潜在遗传结构中的相互作用有关,还可能与低标记密度下不完全连锁不平衡有关(“幽灵上位性”)。最后,我们在模拟研究中说明了由于幽灵上位性,当标记密度较低时,上位性模型也可能比加性模型更好地预测潜在的纯加性遗传结构的遗传值。我们的观察结果可以鼓励使用低密度面板的基因组上位性模型,并防止对其进行过度的生物学解释。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/06c3/7466977/85b8aa3a9ed9/3137f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验