Bandekar Shraddha Ramdas, Ghosh Mini
Division of Mathematics, School of Advanced Sciences, Vellore Institute of Technology, Chennai, India.
Model Earth Syst Environ. 2022;8(2):2019-2034. doi: 10.1007/s40808-021-01202-8. Epub 2021 Jun 10.
A pandemic is an epidemic spread over a huge geographical area. COVID-19 is such pandemic documented after 1918 flu pandemic. In this work, we frame a mathematical epidemic model taking inspiration from the classic SIR model and develop a compartmental model with ten compartments to study the coronavirus dynamics in India and three of its most affected states, namely, Maharashtra, Karnataka, and Tamil Nadu, with inclusion of factors related to face mask efficacy, contact tracing, and testing along with quarantine and isolation. We fit the developed model and estimate optimum values of disease transmission rate, detection rate of undetected asymptomatic, and the same of undetected symptomatic. A sensitivity analysis is presented stressing on the importance of higher face mask usage, rapid testing, and contact tracing for curbing the disease spread. An optimal control analysis is performed with two control parameters to study the increase and decrease of the infected population with and without control. This study suggests that improved and rapid testing will help in identifying more infectives, thereby contributing in the decline of disease transmission rate. Optimal control analysis results on stressing on the importance of abiding by strict usage of face mask and social distancing for drastic decrease in number of infections. Time series behaviour of the symptomatic, asymptomatic, and hospitalized population is studied for a range of parameters, resulting in thorough understanding of significance of different parameters.
大流行是指在广阔地理区域内传播的流行病。新冠疫情是1918年流感大流行之后出现的此类大流行。在这项工作中,我们借鉴经典的SIR模型构建了一个数学流行病模型,并开发了一个具有十个 compartments 的 compartmental 模型,以研究印度及其三个受影响最严重的邦(即马哈拉施特拉邦、卡纳塔克邦和泰米尔纳德邦)的新冠病毒动态,其中纳入了与口罩功效、接触者追踪、检测以及隔离和检疫相关的因素。我们对所开发的模型进行拟合,并估计疾病传播率、未检测出的无症状感染者的检测率以及未检测出的有症状感染者的检测率的最佳值。进行了敏感性分析,强调了提高口罩使用率、快速检测以及接触者追踪对于遏制疾病传播的重要性。使用两个控制参数进行了最优控制分析,以研究在有控制和无控制情况下感染人群的增减情况。这项研究表明,改进后的快速检测将有助于识别更多感染者,从而有助于降低疾病传播率。最优控制分析结果强调了严格遵守口罩使用和保持社交距离对于大幅减少感染人数的重要性。针对一系列参数研究了有症状、无症状和住院人群的时间序列行为,从而深入理解了不同参数的重要性。