Suppr超能文献

数学建模与预测新冠疫情中的传播动力学——抗击疫情的下一步举措

Mathematical modeling and the transmission dynamics in predicting the Covid-19 - What next in combating the pandemic.

作者信息

Anirudh A

机构信息

Birla Institute of Technology and Science Pilani, Hyderabad, Shameer Pet, Telangana, 500078, India.

出版信息

Infect Dis Model. 2020 Jun 30;5:366-374. doi: 10.1016/j.idm.2020.06.002. eCollection 2020.

Abstract

Mathematical predictions in combating the epidemics are yet to reach its perfection. The rapid spread, the ways, and the procedures involved in containment of a pandemic demand the earliest understanding in finding solutions in line with the habitual, physiological, biological, and environmental aspects of life with better computerised mathematical modeling and predictions. Epidemiology models are key tools in public health management programs despite having a high level of uncertainty in each one of these models. This paper describes the outcome and the challenges of SIR, SEIR, SEIRU, SIRD, SLIAR, ARIMA, SIDARTHE, etc models used in prediction of spread, peak, and reduction of Covid-19 cases.

摘要

对抗疫情的数学预测尚未达到完美。大流行病的快速传播、传播方式以及控制过程,需要通过更好的计算机化数学建模和预测,尽早从与生活的习惯、生理、生物和环境方面相符的角度来理解并找到解决方案。流行病学模型是公共卫生管理项目中的关键工具,尽管这些模型中的每一个都存在高度不确定性。本文描述了用于预测新冠疫情病例传播、峰值和减少情况的SIR、SEIR、SEIRU、SIRD、SLIAR、ARIMA、SIDARTHE等模型的结果和挑战。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/170b/7338618/a99f38ea6c7d/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验