Gao Y, Fu J S, Drake J B, Lamarque J-F, Liu Y
Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, Tennessee, USA.
Atmospheric Chemistry and Climate and Global Dynamics Divisions, National Center for Atmospheric Research, Boulder, Colorado, USA.
Atmos Chem Phys. 2013 Sep;13(18):9607-9621. doi: 10.5194/acp-13-9607-2013.
Dynamical downscaling was applied in this study to link the global climate-chemistry model Community Atmosphere Model (CAM-Chem) with the regional models Weather Research and Forecasting (WRF) Model and Community Multi-scale Air Quality (CMAQ). Two representative concentration pathway (RCP) scenarios (RCP 4.5 and RCP 8.5) were used to evaluate the climate impact on ozone concentrations in the 2050s. From the CAM-Chem global simulation results, ozone concentrations in the lower to mid-troposphere (surface to ~300 hPa), from mid- to high latitudes in the Northern Hemisphere, decreases by the end of the 2050s (2057-2059) in RCP 4.5 compared to present (2001-2004), with the largest decrease of 4-10 ppbv occurring in the summer and the fall; and an increase as high as 10 ppbv in RCP 8.5 resulting from the increased methane emissions. From the regional model CMAQ simulation results, under the RCP 4.5 scenario (2057-2059), in the summer when photochemical reactions are the most active, the large ozone precursor emissions reduction leads to the greatest decrease of downscaled surface ozone concentrations compared to present (2001-2004), ranging from 6 to 10 ppbv. However, a few major cities show ozone increases of 3 to 7 ppbv due to weakened NO titration. Under the RCP 8.5 scenario, in winter, downscaled ozone concentrations increase across nearly the entire continental US in winter, ranging from 3 to 10 ppbv due to increased methane emissions. More intense heat waves are projected to occur by the end of the 2050s in RCP 8.5, leading to a 0.3 ppbv to 2.0 ppbv increase (statistically significant except in the Southeast) of the mean maximum daily 8 h daily average (MDA8) ozone in nine climate regions in the US. Moreover, the upper 95% limit of MDA8 increase reaches 0.4 ppbv to 1.5 ppbv in RCP 4.5 and 0.6 ppbv to 3.2 ppbv in RCP 8.5. The magnitude differences of increase between RCP 4.5 and 8.5 also reflect that the increase of methane emissions may favor or strengthen the effect of heat waves.
本研究采用动力降尺度方法,将全球气候 - 化学模型社区大气模型(CAM - Chem)与区域模型天气研究与预报(WRF)模型及社区多尺度空气质量(CMAQ)相连接。使用了两种代表性浓度路径(RCP)情景(RCP 4.5和RCP 8.5)来评估2050年代气候对臭氧浓度的影响。根据CAM - Chem全球模拟结果,与当前(2001 - 2004年)相比,在RCP 4.5情景下,到2050年代末(2057 - 2059年),北半球中低纬度对流层低层至中层(地面至约300百帕)的臭氧浓度下降,夏季和秋季下降幅度最大,达4 - 10 ppbv;而在RCP 8.5情景下,由于甲烷排放增加,臭氧浓度升高高达10 ppbv。根据区域模型CMAQ模拟结果,在RCP 4.5情景(2057 - 2059年)下,夏季光化学反应最为活跃时,与当前(2001 - 2004年)相比,大量臭氧前体排放减少导致降尺度后的地面臭氧浓度下降幅度最大,范围为6至10 ppbv。然而,一些主要城市由于NO滴定减弱,臭氧浓度增加3至7 ppbv。在RCP 8.5情景下,冬季美国几乎整个大陆的降尺度臭氧浓度都有所增加,由于甲烷排放增加,增加幅度为3至10 ppbv。预计到2050年代末,RCP 8.5情景下将出现更强烈的热浪,导致美国九个气候区域的日最大8小时平均(MDA8)臭氧平均增加0.3 ppbv至2.0 ppbv(除东南部外具有统计学显著性)。此外,在RCP 4.5情景下,MDA8增加的95%上限达到0.4 ppbv至1.5 ppbv,在RCP 8.5情景下为0.6 ppbv至3.2 ppbv。RCP 4.5和8.5之间增加幅度的差异也反映出甲烷排放的增加可能有利于或加强热浪的影响。