Li Hongyu, Zhao Qi, Zhang Yihua, Sai Ke, Xu Lunshan, Mou Yonggao, Xie Yubin, Ren Jian, Jiang Xiaobing
State Key Laboratory of Oncology in South China, Cancer Center, Collaborative Innovation Center for Cancer Medicine, School of Life Science, Sun Yat-sen University, Guangzhou, Guangdong 510060, China.
School of Data and Computer Science, Sun Yat-sen University, Guangzhou, Guangdong 510060, China.
Comput Struct Biotechnol J. 2021 May 14;19:3077-3086. doi: 10.1016/j.csbj.2021.05.023. eCollection 2021.
The secreting function of pituitary adenomas (PAs) plays a critical role in making the treatment strategies. However, Magnetic Resonance Imaging (MRI) analysis for pituitary adenomas is labor intensive and highly variable among radiologists. In this work, by applying convolutional neural network (CNN), we built a segmentation and classification model to help distinguish functioning pituitary adenomas from non-functioning subtypes with 3D MRI images from 185 patients with PAs (two centers). Specifically, the classification model adopts the concept of transfer learning and uses the pre-trained segmentation model to extract deep features from conventional MRI images. As a result, both segmentation and classification models obtained high performance in two internal validation datasets and an external testing dataset (for segmentation model: Dice score = 0.8188, 0.8091 and 0.8093 respectively; for classification model: AUROC = 0.8063, 0.7881 and 0.8478, respectively). In addition, the classification model considers the attention mechanism for better model interpretation. Taken together, this work provides the first deep learning-based tumor region segmentation and classification models of PAs, which enables early diagnosis and subtyping PAs from MRI images.
垂体腺瘤(PAs)的分泌功能在制定治疗策略中起着关键作用。然而,垂体腺瘤的磁共振成像(MRI)分析工作强度大,且放射科医生之间的差异很大。在这项研究中,我们应用卷积神经网络(CNN)构建了一个分割和分类模型,以利用来自185例垂体腺瘤患者(两个中心)的3D MRI图像帮助区分功能性垂体腺瘤和非功能性亚型。具体而言,分类模型采用迁移学习的概念,并使用预训练的分割模型从传统MRI图像中提取深度特征。结果,分割和分类模型在两个内部验证数据集和一个外部测试数据集中均取得了高性能(对于分割模型:Dice分数分别为0.8188、0.8091和0.8093;对于分类模型:AUROC分别为0.8063、0.7881和0.8478)。此外,分类模型考虑了注意力机制以更好地解释模型。综上所述,这项研究提供了首个基于深度学习的垂体腺瘤肿瘤区域分割和分类模型,能够从MRI图像中实现垂体腺瘤的早期诊断和亚型分类。