Suppr超能文献

肝细胞癌分级的增强CT影像组学分析

Radiomics Analysis of Contrast-Enhanced CT for Hepatocellular Carcinoma Grading.

作者信息

Chen Wen, Zhang Tao, Xu Lin, Zhao Liang, Liu Huan, Gu Liang Rui, Wang Dai Zhong, Zhang Ming

机构信息

Department of Medical Imaging, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.

Department of Radiology, Taihe Hospital, Hubei University of Medicine, Shiyan, China.

出版信息

Front Oncol. 2021 Jun 4;11:660509. doi: 10.3389/fonc.2021.660509. eCollection 2021.

Abstract

OBJECTIVES

To investigate the value of contrast-enhanced computer tomography (CT)-based on radiomics in discriminating high-grade and low-grade hepatocellular carcinoma (HCC) before surgery.

METHODS

The retrospective study including 161 consecutive subjects with HCC which was approved by the institutional review board, and the patients were divided into a training group (n = 112) and test group (n = 49) from January 2013 to January 2018. The least absolute shrinkage and selection operator (LASSO) was used to select the most valuable features to build a support vector machine (SVM) model. The performance of the predictive model was evaluated using the area under the curve (AUC), accuracy, sensitivity, and specificity.

RESULTS

The SVM model showed an acceptable ability to differentiate high-grade from low-grade HCC, with an AUC of 0.904 in the training dataset and 0.937 in the test dataset, accuracy (92.2% versus 95.7%), sensitivity(82.5% versus 88.0%), and specificity (92.7% versus 95.8%), respectively.

CONCLUSION

The machine learning-based radiomics reflects a better evaluating performance in differentiating HCC between low-grade and high-grade, which may contribute to personalized treatment.

摘要

目的

探讨基于放射组学的增强计算机断层扫描(CT)在术前鉴别高、低级别肝细胞癌(HCC)中的价值。

方法

这项回顾性研究纳入了161例连续的HCC患者,该研究经机构审查委员会批准,患者于2013年1月至2018年1月被分为训练组(n = 112)和测试组(n = 49)。采用最小绝对收缩和选择算子(LASSO)选择最有价值的特征来构建支持向量机(SVM)模型。使用曲线下面积(AUC)、准确率、敏感性和特异性评估预测模型的性能。

结果

SVM模型显示出区分高、低级别HCC的可接受能力,训练数据集的AUC为0.904,测试数据集的AUC为0.937,准确率分别为92.2%和95.7%,敏感性分别为82.5%和88.0%,特异性分别为92.7%和95.8%。

结论

基于机器学习的放射组学在鉴别低级别和高级别HCC方面表现出更好的评估性能,这可能有助于个性化治疗。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e08f/8212783/f85f1c92f207/fonc-11-660509-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验