Suppr超能文献

淋巴转运机制的定量分析及对淋巴结驻留白细胞进入淋巴携带大分子和药物递送系统的屏障影响。

Quantitation of lymphatic transport mechanism and barrier influences on lymph node-resident leukocyte access to lymph-borne macromolecules and drug delivery systems.

机构信息

Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA.

School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA.

出版信息

Drug Deliv Transl Res. 2021 Dec;11(6):2328-2343. doi: 10.1007/s13346-021-01015-3. Epub 2021 Jun 24.

Abstract

Lymph nodes (LNs) are tissues of the immune system that house leukocytes, making them targets of interest for a variety of therapeutic immunomodulation applications. However, achieving accumulation of a therapeutic in the LN does not guarantee equal access to all leukocyte subsets. LNs are structured to enable sampling of lymph draining from peripheral tissues in a highly spatiotemporally regulated fashion in order to facilitate optimal adaptive immune responses. This structure results in restricted nanoscale drug delivery carrier access to specific leukocyte targets within the LN parenchyma. Herein, a framework is presented to assess the manner in which lymph-derived macromolecules and particles are sampled in the LN to reveal new insights into how therapeutic strategies or drug delivery systems may be designed to improve access to dLN-resident leukocytes. This summary analysis of previous reports from our group assesses model nanoscale fluorescent tracer association with various leukocyte populations across relevant time periods post administration, studies the effects of bioactive molecule NO on access of lymph-borne solutes to dLN leukocytes, and illustrates the benefits to leukocyte access afforded by lymphatic-targeted multistage drug delivery systems. Results reveal trends consistent with the consensus view of how lymph is sampled by LN leukocytes resulting from tissue structural barriers that regulate inter-LN transport and demonstrate how novel, engineered delivery systems may be designed to overcome these barriers to unlock the therapeutic potential of LN-resident cells as drug delivery targets.

摘要

淋巴结(LNs)是免疫系统的组织,其中含有白细胞,使其成为各种治疗性免疫调节应用的关注目标。然而,实现治疗剂在 LN 中的积累并不能保证所有白细胞亚群都能平等地获得。LN 的结构使其能够以高度时空调节的方式对来自外周组织的淋巴进行采样,以促进最佳的适应性免疫反应。这种结构导致纳米级药物递送载体对 LN 实质内特定白细胞靶标的受限访问。本文提出了一个框架来评估淋巴来源的大分子和颗粒在 LN 中被采样的方式,以揭示新的见解,了解治疗策略或药物递送系统如何设计可以改善对 dLN 驻留白细胞的访问。本综述分析了我们小组以前的报告,评估了模型纳米荧光示踪剂与给药后不同时间点各种白细胞群体的关联,研究了生物活性分子 NO 对淋巴携带溶质进入 dLN 白细胞的访问的影响,并说明了淋巴靶向多阶段药物递送系统为白细胞访问带来的益处。结果揭示了 LN 白细胞对淋巴进行采样的方式与组织结构屏障一致的趋势,这些屏障调节 LN 之间的运输,并展示了如何设计新型工程化的递送系统来克服这些障碍,以释放 LN 驻留细胞作为药物递送靶标的治疗潜力。

相似文献

2
Lymph-directed nitric oxide increases immune cell access to lymph-borne nanoscale solutes.
Biomaterials. 2021 Jan;265:120411. doi: 10.1016/j.biomaterials.2020.120411. Epub 2020 Sep 18.
4
High-Density Lipoprotein Composition Influences Lymphatic Transport after Subcutaneous Administration.
Mol Pharm. 2020 Aug 3;17(8):2938-2951. doi: 10.1021/acs.molpharmaceut.0c00348. Epub 2020 Jul 13.
5
Lymph node lymphatic endothelial cells as multifaceted gatekeepers in the immune system.
Trends Immunol. 2023 Jan;44(1):72-86. doi: 10.1016/j.it.2022.10.010. Epub 2022 Nov 30.
7
Optimization of the delivery of molecules into lymph nodes using a lymphatic drug delivery system with ultrasound.
Int J Pharm. 2021 Mar 15;597:120324. doi: 10.1016/j.ijpharm.2021.120324. Epub 2021 Feb 2.
8
Interactions between nanoparticles and lymphatic systems: Mechanisms and applications in drug delivery.
Adv Drug Deliv Rev. 2024 Jun;209:115304. doi: 10.1016/j.addr.2024.115304. Epub 2024 Apr 9.
10

引用本文的文献

1
The Lymphatic Vascular System in Extracellular Vesicle-Mediated Tumor Progression.
Cancers (Basel). 2024 Dec 2;16(23):4039. doi: 10.3390/cancers16234039.
2
Nanotechnologies for Physiology-Informed Drug Delivery to the Lymphatic System.
Annu Rev Biomed Eng. 2023 Jun 8;25:233-256. doi: 10.1146/annurev-bioeng-092222-034906. Epub 2023 Mar 31.
3
Locoregional Lymphatic Delivery Systems Using Nanoparticles and Hydrogels for Anticancer Immunotherapy.
Pharmaceutics. 2022 Dec 8;14(12):2752. doi: 10.3390/pharmaceutics14122752.
4
Tumor Vascular Remodeling Affects Molecular Dissemination to Lymph Node and Systemic Leukocytes.
Tissue Eng Part A. 2022 Sep;28(17-18):781-794. doi: 10.1089/ten.TEA.2022.0020. Epub 2022 Jun 21.
5
Innovations in lymph node targeting nanocarriers.
Semin Immunol. 2021 Aug;56:101534. doi: 10.1016/j.smim.2021.101534. Epub 2021 Nov 24.
6
Overcoming transport barrier to immunotherapies.
Drug Deliv Transl Res. 2021 Dec;11(6):2271-2272. doi: 10.1007/s13346-021-01080-8. Epub 2021 Oct 21.

本文引用的文献

1
Lymph-directed nitric oxide increases immune cell access to lymph-borne nanoscale solutes.
Biomaterials. 2021 Jan;265:120411. doi: 10.1016/j.biomaterials.2020.120411. Epub 2020 Sep 18.
2
Programmable multistage drug delivery to lymph nodes.
Nat Nanotechnol. 2020 Jun;15(6):491-499. doi: 10.1038/s41565-020-0679-4. Epub 2020 Jun 10.
3
Suppressing Subcapsular Sinus Macrophages Enhances Transport of Nanovaccines to Lymph Node Follicles for Robust Humoral Immunity.
ACS Nano. 2020 Aug 25;14(8):9478-9490. doi: 10.1021/acsnano.0c02240. Epub 2020 Jun 12.
4
Biomaterials for Modulating Lymphatic Function in Immunoengineering.
ACS Pharmacol Transl Sci. 2019 Sep 4;2(5):293-310. doi: 10.1021/acsptsci.9b00047. eCollection 2019 Oct 11.
5
Lymphatic endothelial cells of the lymph node.
Nat Rev Immunol. 2020 Sep;20(9):566-578. doi: 10.1038/s41577-020-0281-x. Epub 2020 Feb 24.
6
Enhancing cancer immunotherapy with nanomedicine.
Nat Rev Immunol. 2020 May;20(5):321-334. doi: 10.1038/s41577-019-0269-6. Epub 2020 Jan 31.
7
Physical and chemical profiles of nanoparticles for lymphatic targeting.
Adv Drug Deliv Rev. 2019 Nov-Dec;151-152:72-93. doi: 10.1016/j.addr.2019.09.005. Epub 2019 Oct 15.
8
Nanoparticle Size Influences Antigen Retention and Presentation in Lymph Node Follicles for Humoral Immunity.
Nano Lett. 2019 Oct 9;19(10):7226-7235. doi: 10.1021/acs.nanolett.9b02834. Epub 2019 Sep 17.
9
B Cell Responses: Cell Interaction Dynamics and Decisions.
Cell. 2019 Apr 18;177(3):524-540. doi: 10.1016/j.cell.2019.03.016.
10
Subcapsular Sinus Macrophages: The Seat of Innate and Adaptive Memory in Murine Lymph Nodes.
Trends Immunol. 2019 Jan;40(1):35-48. doi: 10.1016/j.it.2018.11.004. Epub 2018 Nov 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验