Suppr超能文献

核酸纳米颗粒(NANPs)同时沉默溶血磷脂酰胆碱酰基转移酶 1-4 可改善黑素瘤细胞对辐射的反应。

Simultaneous silencing of lysophosphatidylcholine acyltransferases 1-4 by nucleic acid nanoparticles (NANPs) improves radiation response of melanoma cells.

机构信息

Centro de Investigação Translacional em Oncologia (LIM24), Departamento de Radiologia e Oncologia, Faculdade de Medicina da Universidade de São Paulo and Instituto do Câncer do Estado de São Paulo, São Paulo, SP, Brazil.

Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC, USA.

出版信息

Nanomedicine. 2021 Aug;36:102418. doi: 10.1016/j.nano.2021.102418. Epub 2021 Jun 24.

Abstract

Radiation induces the generation of platelet-activating factor receptor (PAF-R) ligands, including PAF and oxidized phospholipids. Alternatively, PAF is also synthesized by the biosynthetic enzymes lysophosphatidylcholine acyltransferases (LPCATs) which are expressed by tumor cells including melanoma. The activation of PAF-R by PAF and oxidized lipids triggers a survival response protecting tumor cells from radiation-induced cell death, suggesting the involvement of the PAF/PAF-R axis in radioresistance. Here, we investigated the role of LPCATs in the melanoma cell radiotherapy response. LPCAT is a family of four enzymes, LPCAT1-4, and modular nucleic acid nanoparticles (NANPs) allowed for the simultaneous silencing of all four LPCATs. We found that the in vitro simultaneous silencing of all four LPCAT transcripts by NANPs enhanced the therapeutic effects of radiation in melanoma cells by increasing cell death, reducing long-term cell survival, and activating apoptosis. Thus, we propose that NANPs are an effective strategy for improving radiotherapy efficacy in melanomas.

摘要

辐射会诱导血小板激活因子受体 (PAF-R) 配体的产生,包括 PAF 和氧化磷脂。或者,PAF 也可以由生物合成酶溶血磷脂酰基转移酶 (LPCAT) 合成,这些酶由包括黑色素瘤在内的肿瘤细胞表达。PAF 和氧化脂质激活 PAF-R 会触发一种生存反应,保护肿瘤细胞免受辐射诱导的细胞死亡,这表明 PAF/PAF-R 轴参与了放射抵抗。在这里,我们研究了 LPCAT 在黑色素瘤细胞放射治疗反应中的作用。LPCAT 是一个由四种酶组成的家族,即 LPCAT1-4,而模块化核酸纳米颗粒 (NANPs) 允许同时沉默所有四种 LPCAT。我们发现,NANPs 同时沉默所有四种 LPCAT 转录本可通过增加细胞死亡、减少长期细胞存活和激活细胞凋亡来增强黑色素瘤细胞的放射治疗效果。因此,我们提出 NANPs 是提高黑色素瘤放射治疗效果的有效策略。

相似文献

2
Lysophosphatidylcholine acyltransferase 1 altered phospholipid composition and regulated hepatoma progression.
J Hepatol. 2013 Aug;59(2):292-9. doi: 10.1016/j.jhep.2013.02.030. Epub 2013 Apr 6.
3
Combination of Nucleic Acid and Mesoporous Silica Nanoparticles: Optimization and Therapeutic Performance In Vitro.
ACS Appl Mater Interfaces. 2020 Sep 2;12(35):38873-38886. doi: 10.1021/acsami.0c07106. Epub 2020 Aug 18.
5
Down-regulation of LPCAT expression increases platelet-activating factor level in cirrhotic rat liver: potential antiinflammatory effect of silybin.
Biochim Biophys Acta. 2013 Dec;1832(12):2019-26. doi: 10.1016/j.bbadis.2013.07.005. Epub 2013 Jul 12.
6
Selective inhibitors of a PAF biosynthetic enzyme lysophosphatidylcholine acyltransferase 2.
J Lipid Res. 2014 Jul;55(7):1386-96. doi: 10.1194/jlr.M049205. Epub 2014 May 21.
7
Exosome mediated delivery of functional nucleic acid nanoparticles (NANPs).
Nanomedicine. 2020 Nov;30:102285. doi: 10.1016/j.nano.2020.102285. Epub 2020 Aug 8.
9
Relief from neuropathic pain by blocking of the platelet-activating factor-pain loop.
FASEB J. 2017 Jul;31(7):2973-2980. doi: 10.1096/fj.201601183R. Epub 2017 Mar 24.
10
Identification of a novel noninflammatory biosynthetic pathway of platelet-activating factor.
J Biol Chem. 2008 Apr 25;283(17):11097-106. doi: 10.1074/jbc.M708909200. Epub 2008 Feb 19.

引用本文的文献

1
The role of phosphatidylcholine metabolism in tumors.
Med Oncol. 2025 Aug 27;42(10):450. doi: 10.1007/s12032-025-03017-4.
3
Nucleic acid nanobiosystems for cancer theranostics: an overview of emerging trends and challenges.
Nanomedicine (Lond). 2025 Jun;20(11):1281-1298. doi: 10.1080/17435889.2025.2501919. Epub 2025 May 6.
6
Reverse Transfection of Functional RNA Rings into Cancer Cells Followed by in Vitro Irradiation.
Methods Mol Biol. 2023;2709:263-276. doi: 10.1007/978-1-0716-3417-2_18.
7
Light-Assisted Drying for the Thermal Stabilization of Nucleic Acid Nanoparticles and Other Biologics.
Methods Mol Biol. 2023;2709:117-130. doi: 10.1007/978-1-0716-3417-2_7.
8
Structural Characterization of Nucleic Acid Nanoparticles Using SAXS and SAXS-Driven MD.
Methods Mol Biol. 2023;2709:65-94. doi: 10.1007/978-1-0716-3417-2_4.
9
Therapeutic immunomodulation by rationally designed nucleic acids and nucleic acid nanoparticles.
Front Immunol. 2023 Jan 31;14:1053550. doi: 10.3389/fimmu.2023.1053550. eCollection 2023.
10
Biomotors, viral assembly, and RNA nanobiotechnology: Current achievements and future directions.
Comput Struct Biotechnol J. 2022 Nov 11;20:6120-6137. doi: 10.1016/j.csbj.2022.11.007. eCollection 2022.

本文引用的文献

1
Nucleic acid nanoparticles (NANPs) as molecular tools to direct desirable and avoid undesirable immunological effects.
Adv Drug Deliv Rev. 2021 Jun;173:427-438. doi: 10.1016/j.addr.2021.04.011. Epub 2021 Apr 20.
2
New Insights Into the Pathologic Roles of the Platelet-Activating Factor System.
Front Endocrinol (Lausanne). 2021 Mar 15;12:624132. doi: 10.3389/fendo.2021.624132. eCollection 2021.
3
Use of human peripheral blood mononuclear cells to define immunological properties of nucleic acid nanoparticles.
Nat Protoc. 2020 Nov;15(11):3678-3698. doi: 10.1038/s41596-020-0393-6. Epub 2020 Oct 23.
4
Combination of Nucleic Acid and Mesoporous Silica Nanoparticles: Optimization and Therapeutic Performance In Vitro.
ACS Appl Mater Interfaces. 2020 Sep 2;12(35):38873-38886. doi: 10.1021/acsami.0c07106. Epub 2020 Aug 18.
5
Opportunities, Barriers, and a Strategy for Overcoming Translational Challenges to Therapeutic Nucleic Acid Nanotechnology.
ACS Nano. 2020 Aug 25;14(8):9221-9227. doi: 10.1021/acsnano.0c04753. Epub 2020 Jul 24.
6
The interaction between ferroptosis and lipid metabolism in cancer.
Signal Transduct Target Ther. 2020 Jun 30;5(1):108. doi: 10.1038/s41392-020-00216-5.
7
Visualizing and interpreting cancer genomics data via the Xena platform.
Nat Biotechnol. 2020 Jun;38(6):675-678. doi: 10.1038/s41587-020-0546-8.
8
Molecular Mechanisms of Radiation-Induced Cancer Cell Death: A Primer.
Front Cell Dev Biol. 2020 Feb 13;8:41. doi: 10.3389/fcell.2020.00041. eCollection 2020.
9
Immunological impact of cell death signaling driven by radiation on the tumor microenvironment.
Nat Immunol. 2020 Feb;21(2):120-134. doi: 10.1038/s41590-019-0561-4. Epub 2019 Dec 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验