Suppr超能文献

谎言杀人,事实救人:在推特上检测新冠疫情虚假信息

Lies Kill, Facts Save: Detecting COVID-19 Misinformation in Twitter.

作者信息

Al-Rakhami Mabrook S, Al-Amri Atif M

机构信息

Research Chair of Pervasive and Mobile ComputingKing Saud UniversityRiyadh11543Saudi Arabia.

Information Systems DepartmentCollege of Computer and Information SciencesKing Saud UniversityRiyadh11543Saudi Arabia.

出版信息

IEEE Access. 2020 Aug 26;8:155961-155970. doi: 10.1109/ACCESS.2020.3019600. eCollection 2020.

Abstract

Online social networks (ONSs) such as Twitter have grown to be very useful tools for the dissemination of information. However, they have also become a fertile ground for the spread of false information, particularly regarding the ongoing coronavirus disease 2019 (COVID-19) pandemic. Best described as an infodemic, there is a great need, now more than ever, for scientific fact-checking and misinformation detection regarding the dangers posed by these tools with regards to COVID-19. In this article, we analyze the credibility of information shared on Twitter pertaining the COVID-19 pandemic. For our analysis, we propose an ensemble-learning-based framework for verifying the credibility of a vast number of tweets. In particular, we carry out analyses of a large dataset of tweets conveying information regarding COVID-19. In our approach, we classify the information into two categories: credible or non-credible. Our classifications of tweet credibility are based on various features, including tweet- and user-level features. We conduct multiple experiments on the collected and labeled dataset. The results obtained with the proposed framework reveal high accuracy in detecting credible and non-credible tweets containing COVID-19 information.

摘要

推特等在线社交网络已发展成为传播信息的非常有用的工具。然而,它们也成为了虚假信息传播的温床,尤其是关于当前的2019冠状病毒病(COVID-19)大流行的虚假信息。这种情况被恰如其分地描述为信息疫情,现在比以往任何时候都更迫切需要对这些工具在COVID-19方面所带来的危险进行科学事实核查和错误信息检测。在本文中,我们分析了推特上分享的与COVID-19大流行相关信息的可信度。为了进行分析,我们提出了一个基于集成学习的框架,用于验证大量推文的可信度。特别是,我们对一个传达COVID-19相关信息的大型推文数据集进行了分析。在我们的方法中,我们将信息分为两类:可信或不可信。我们对推文可信度的分类基于各种特征,包括推文和用户层面的特征。我们对收集到的已标记数据集进行了多次实验。使用所提出的框架获得的结果显示,在检测包含COVID-19信息的可信和不可信推文方面具有很高的准确性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/064d/8043503/af1fe0c35b81/alrak1ab-3019600.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验