Suppr超能文献

在线社交网络中的实时假新闻检测:基于FANDC云的系统。

Real-time fake news detection in online social networks: FANDC Cloud-based system.

作者信息

Cavus Nadire, Goksu Murat, Oktekin Bora

机构信息

Department of Computer Information Systems, Near East University, 99138, Nicosia, Mersin 10, Cyprus, Turkey.

Computer Information Systems Research and Technology Center, Near East University, 99138, Nicosia, Mersin 10, Cyprus, Turkey.

出版信息

Sci Rep. 2024 Oct 29;14(1):25954. doi: 10.1038/s41598-024-76102-9.

Abstract

Social networks have become a common way for people to communicate with each other and share ideas, thanks to their fast information-sharing features. But fake news spread on social networks can cause many negative consequences by affecting people's daily lives. However, the literature lacks online and real-time fake news detection systems. This study aims to fill this gap in the literature and to handle the fake news detection problem with a system called FANDC, based on cloud computing, to cope with fake news in seven different categories, and to solve the real-time fake news detection problems. The system was developed using the CRISP-DM methodology with a hybrid approach. BERT algorithm was used in the system running on the cloud to avoid possible cyber threats with the dataset created with approximately 99 million big data from COVID-19-TweetIDs GitHub repository. It was trained in two periods with 100% accuracy during the modeling phase in terms of training accuracy. Experimental results of the FANDC system performed the real-time detection of fake news at 99% accuracy. However, previous studies experimental level success rate in the literature, were around 90%. We hope that the developed system will greatly assist social network users in detecting fake news in real-time.

摘要

由于社交网络具有快速信息共享功能,它已成为人们相互交流和分享想法的常见方式。但在社交网络上传播的虚假新闻会影响人们的日常生活,从而造成许多负面后果。然而,现有文献中缺乏在线实时虚假新闻检测系统。本研究旨在填补这一文献空白,使用一个名为FANDC的基于云计算的系统来处理虚假新闻检测问题,以应对七种不同类别的虚假新闻,并解决实时虚假新闻检测问题。该系统采用CRISP-DM方法和混合方法开发。在云端运行的系统中使用了BERT算法,通过从COVID-19-TweetIDs GitHub存储库中约9900万个大数据创建的数据集来避免可能的网络威胁。在建模阶段,就训练准确率而言,它分两个阶段进行训练,准确率达到100%。FANDC系统的实验结果以99%的准确率对虚假新闻进行了实时检测。然而,文献中先前研究的实验水平成功率约为90%。我们希望所开发的系统将极大地帮助社交网络用户实时检测虚假新闻。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/87ea/11522311/b62b8e3545eb/41598_2024_76102_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验