Suppr超能文献

通过纤维簇体素标注实现个体全脑高度可重复的脑区划分

Highly Reproducible Whole Brain Parcellation in Individuals via Voxel Annotation with Fiber Clusters.

作者信息

Wu Ye, Ahmad Sahar, Yap Pew-Thian

机构信息

Department of Radiology and Biomedical Research Imaging Center (BRIC), The University of North Carolina at Chapel Hill, NC, USA.

出版信息

Med Image Comput Comput Assist Interv. 2021 Sep-Oct;12907:477-486. doi: 10.1007/978-3-030-87234-2_45. Epub 2021 Sep 21.

Abstract

A central goal in systems neuroscience is to parcellate the brain into discrete units that are neurobiologically coherent. Here, we propose a strategy for consistent whole-brain parcellation of white matter (WM) and gray matter (GM) in individuals. We parcellate the brain into coherent parcels using non-negative matrix factorization based on voxel annotation using fiber clusters. Tractography is performed using an algorithm that mitigates gyral bias, allowing full gyral and sulcal coverage for reliable parcellation of the cortical ribbon. Experimental results indicate that parcellation using our approach is highly reproducible with 100% test-retest parcel identification rate and is highly consistent with significantly lower inter-subject variability than FreeSurfer parcellation. This implies that reproducible parcellation can be obtained for subject-specific investigation of brain structure and function.

摘要

系统神经科学的一个核心目标是将大脑划分为神经生物学上连贯的离散单元。在此,我们提出一种针对个体白质(WM)和灰质(GM)进行全脑一致性分割的策略。我们基于使用纤维簇的体素注释,通过非负矩阵分解将大脑分割为连贯的脑区。使用一种减轻脑回偏差的算法进行纤维束成像,从而实现对脑回和脑沟的全面覆盖,以可靠地分割皮质带。实验结果表明,使用我们的方法进行分割具有高度可重复性,重测脑区识别率达100%,并且与FreeSurfer分割相比,个体间变异性显著更低,一致性更高。这意味着可以获得可重复的分割结果,用于大脑结构和功能的个体特异性研究。

相似文献

1
Highly Reproducible Whole Brain Parcellation in Individuals via Voxel Annotation with Fiber Clusters.通过纤维簇体素标注实现个体全脑高度可重复的脑区划分
Med Image Comput Comput Assist Interv. 2021 Sep-Oct;12907:477-486. doi: 10.1007/978-3-030-87234-2_45. Epub 2021 Sep 21.
3
Group-Wise Cortical Surface Parcellation Based on Inter-Subject Fiber Clustering.基于跨个体纤维聚类的群组皮质表面分割。
Annu Int Conf IEEE Eng Med Biol Soc. 2021 Nov;2021:2655-2659. doi: 10.1109/EMBC46164.2021.9631099.

本文引用的文献

1
Tract Dictionary Learning for Fast and Robust Recognition of Fiber Bundles.用于快速稳健识别纤维束的轨迹字典学习
Med Image Comput Comput Assist Interv. 2020 Oct;12267:251-259. doi: 10.1007/978-3-030-59728-3_25. Epub 2020 Sep 29.
5
Imaging-based parcellations of the human brain.基于影像的人脑分区。
Nat Rev Neurosci. 2018 Nov;19(11):672-686. doi: 10.1038/s41583-018-0071-7.
9
ATPP: A Pipeline for Automatic Tractography-Based Brain Parcellation.ATPP:基于自动纤维束成像的脑图谱绘制流程
Front Neuroinform. 2017 May 29;11:35. doi: 10.3389/fninf.2017.00035. eCollection 2017.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验