文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

In Vitro and In Vivo Evaluation of PEGylated Starch-Coated Iron Oxide Nanoparticles for Enhanced Photothermal Cancer Therapy.

作者信息

Amatya Reeju, Hwang Seungmi, Park Taehoon, Min Kyoung Ah, Shin Meong Cheol

机构信息

College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, 501 Jinju Daero, Jinju 52828, Gyeongnam, Korea.

College of Pharmacy and Inje Institute of Pharmaceutical Sciences and Research, Inje University, 197 Injero, Gimhae 50834, Gyeongnam, Korea.

出版信息

Pharmaceutics. 2021 Jun 12;13(6):871. doi: 10.3390/pharmaceutics13060871.


DOI:10.3390/pharmaceutics13060871
PMID:34204840
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8231641/
Abstract

Iron oxide nanoparticles (IONPs) possess versatile utility in cancer theranostics, thus, they have drawn enormous interest in the cancer research field. Herein, we prepared polyethylene glycol (PEG)-conjugated and starch-coated IONPs ("PEG-starch-IONPs"), and assessed their applicability for photothermal treatment (PTT) of cancer. The prepared PEG-starch-IONPs were investigated for their physical properties by transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, and dynamic light scattering (DLS). The pharmacokinetic study results showed a significant extension in the plasma half-life by PEGylation, which led to a markedly increased (5.7-fold) tumor accumulation. When PEG-starch-IONPs were evaluated for their photothermal activity, notably, they displayed marked and reproducible heating effects selectively on the tumor site with laser irradiation. Lastly, efficacy studies demonstrated that PEG-starch-IONPs-based PTT may be a promising mode of cancer therapy.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2abc/8231641/8188a818a5d5/pharmaceutics-13-00871-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2abc/8231641/81bd4f0362ad/pharmaceutics-13-00871-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2abc/8231641/cedca3cce596/pharmaceutics-13-00871-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2abc/8231641/843293c4b026/pharmaceutics-13-00871-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2abc/8231641/6f3b77d625ad/pharmaceutics-13-00871-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2abc/8231641/22c83343a243/pharmaceutics-13-00871-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2abc/8231641/9b736a5c9a6f/pharmaceutics-13-00871-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2abc/8231641/48c4d534ff5a/pharmaceutics-13-00871-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2abc/8231641/5a23f4b3afc0/pharmaceutics-13-00871-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2abc/8231641/fdd097f7d8cf/pharmaceutics-13-00871-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2abc/8231641/8188a818a5d5/pharmaceutics-13-00871-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2abc/8231641/81bd4f0362ad/pharmaceutics-13-00871-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2abc/8231641/cedca3cce596/pharmaceutics-13-00871-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2abc/8231641/843293c4b026/pharmaceutics-13-00871-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2abc/8231641/6f3b77d625ad/pharmaceutics-13-00871-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2abc/8231641/22c83343a243/pharmaceutics-13-00871-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2abc/8231641/9b736a5c9a6f/pharmaceutics-13-00871-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2abc/8231641/48c4d534ff5a/pharmaceutics-13-00871-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2abc/8231641/5a23f4b3afc0/pharmaceutics-13-00871-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2abc/8231641/fdd097f7d8cf/pharmaceutics-13-00871-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2abc/8231641/8188a818a5d5/pharmaceutics-13-00871-g010.jpg

相似文献

[1]
In Vitro and In Vivo Evaluation of PEGylated Starch-Coated Iron Oxide Nanoparticles for Enhanced Photothermal Cancer Therapy.

Pharmaceutics. 2021-6-12

[2]
Rice starch coated iron oxide nanoparticles: A theranostic probe for photoacoustic imaging-guided photothermal cancer therapy.

Int J Biol Macromol. 2021-7-31

[3]
ICG-Loaded PEGylated BSA-Silver Nanoparticles for Effective Photothermal Cancer Therapy.

Int J Nanomedicine. 2020-7-31

[4]
Synthesis Of PEG-Coated, Ultrasmall, Manganese-Doped Iron Oxide Nanoparticles With High Relaxivity For T/T Dual-Contrast Magnetic Resonance Imaging.

Int J Nanomedicine. 2019-10-24

[5]
Gold-coated magnetic nanoparticle as a nanotheranostic agent for magnetic resonance imaging and photothermal therapy of cancer.

Lasers Med Sci. 2017-9

[6]
Albumin-coated copper nanoparticles for photothermal cancer therapy: Synthesis and in vitro characterization.

Heliyon. 2023-6-27

[7]
Surface Engineered Iron Oxide Nanoparticles Generated by Inert Gas Condensation for Biomedical Applications.

Bioengineering (Basel). 2021-3-15

[8]
Label-Free Iron Oxide Nanoparticles as Multimodal Contrast Agents in Cells Using Multi-Photon and Magnetic Resonance Imaging.

Int J Nanomedicine. 2021

[9]
Polyethylene glycol modified, cross-linked starch-coated iron oxide nanoparticles for enhanced magnetic tumor targeting.

Biomaterials. 2010-12-21

[10]
Synthesis and Characterization of Amorphous Iron Oxide Nanoparticles by the Sonochemical Method and Their Application for the Remediation of Heavy Metals from Wastewater.

Nanomaterials (Basel). 2020-8-7

引用本文的文献

[1]
Exploring Oxidative Stress Mechanisms of Nanoparticles Using Zebrafish (): Toxicological and Pharmaceutical Insights.

Antioxidants (Basel). 2025-4-18

[2]
Synergistic approach of PEGylated photothermal agent and immunomodulator in cancer immunotherapy.

Nanomedicine (Lond). 2025-5

[3]
Recent Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand Engineering Strategies for Precise Strike Therapy against Tumor.

Biomater Res. 2025-3-19

[4]
Key factors influencing magnetic nanoparticle-based photothermal therapy: physicochemical properties, irradiation power, and particle concentration .

Nanoscale Adv. 2024-11-12

[5]
Metallic nanomaterials - targeted drug delivery approaches for improved bioavailability, reduced side toxicity, and enhanced patient outcomes.

Rom J Morphol Embryol. 2024

[6]
Current Overview of Metal Nanoparticles' Synthesis, Characterization, and Biomedical Applications, with a Focus on Silver and Gold Nanoparticles.

Pharmaceuticals (Basel). 2023-10-4

[7]
Albumin-coated copper nanoparticles for photothermal cancer therapy: Synthesis and in vitro characterization.

Heliyon. 2023-6-27

[8]
Superparamagnetic Iron Oxide Nanoparticles (SPION): From Fundamentals to State-of-the-Art Innovative Applications for Cancer Therapy.

Pharmaceutics. 2023-1-10

[9]
Gold-Coated Superparamagnetic Iron Oxide Nanoparticles Functionalized to EGF and Ce6 Complexes for Breast Cancer Diagnoses and Therapy.

Pharmaceutics. 2022-12-28

[10]
Pharmacokinetics of magnetic iron oxide nanoparticles for medical applications.

J Nanobiotechnology. 2022-6-27

本文引用的文献

[1]
Ferrimagnetic mPEG--PHEP copolymer micelles loaded with iron oxide nanocubes and emodin for enhanced magnetic hyperthermia-chemotherapy.

Natl Sci Rev. 2020-4

[2]
An On-Demand pH-Sensitive Nanocluster for Cancer Treatment by Combining Photothermal Therapy and Chemotherapy.

Pharmaceutics. 2020-9-2

[3]
Clinical development and potential of photothermal and photodynamic therapies for cancer.

Nat Rev Clin Oncol. 2020-11

[4]
Photothermal therapy.

J Control Release. 2020-9-10

[5]
Iron oxide nanoparticles for therapeutic applications.

Drug Discov Today. 2020-1

[6]
Externally Controlled Cellular Transport of Magnetic Iron Oxide Particles with Polysaccharide Surface Coatings.

Cell Biochem Biophys. 2019-5-21

[7]
Targeted Fe-doped silica nanoparticles as a novel ultrasound-magnetic resonance dual-mode imaging contrast agent for HER2-positive breast cancer.

Int J Nanomedicine. 2019-4-5

[8]
Iron oxide nanoparticles: Diagnostic, therapeutic and theranostic applications.

Adv Drug Deliv Rev. 2019-1-11

[9]
Nanomaterials as photothermal therapeutic agents.

Prog Mater Sci. 2019-1

[10]
Photothermal therapy and photoacoustic imaging via nanotheranostics in fighting cancer.

Chem Soc Rev. 2019-4-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索