Plant Virus Department, Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, 38124 Brunswick, Germany.
Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 77 Stockholm, Sweden.
Int J Mol Sci. 2021 Jun 11;22(12):6287. doi: 10.3390/ijms22126287.
Stress granules (SGs) are dynamic RNA-protein complexes localized in the cytoplasm that rapidly form under stress conditions and disperse when normal conditions are restored. The formation of SGs depends on the Ras-GAP SH3 domain-binding protein (G3BP). Formations, interactions and functions of plant and human SGs are strikingly similar, suggesting a conserved mechanism. However, functional analyses of plant G3BPs are missing. Thus, members of the G3BP (AtG3BP) protein family were investigated in a complementation assay in a human G3BP knock-out cell line. It was shown that two out of seven AtG3BPs were able to complement the function of their human homolog. GFP-AtG3BP fusion proteins co-localized with human SG marker proteins Caprin-1 and eIF4G1 and restored SG formation in G3BP double KO cells. Interaction between AtG3BP-1 and -7 and known human G3BP interaction partners such as Caprin-1 and USP10 was also demonstrated by co-immunoprecipitation. In addition, an RG/RGG domain exchange from Arabidopsis G3BP into the human G3BP background showed the ability for complementation. In summary, our results support a conserved mechanism of SG function over the kingdoms, which will help to further elucidate the biological function of the Arabidopsis G3BP protein family.
应激颗粒(SGs)是一种定位于细胞质中的动态 RNA-蛋白质复合物,在应激条件下迅速形成,在恢复正常条件时分散。SGs 的形成依赖于 Ras-GAP SH3 结构域结合蛋白(G3BP)。植物和人类 SGs 的形成、相互作用和功能非常相似,这表明存在一种保守的机制。然而,植物 G3BPs 的功能分析还存在缺失。因此,在人类 G3BP 敲除细胞系中进行了互补测定,研究了 G3BP(AtG3BP)蛋白家族的成员。结果表明,在 7 个 AtG3BPs 中有 2 个能够补充其人类同源物的功能。GFP-AtG3BP 融合蛋白与人类 SG 标记蛋白 Caprin-1 和 eIF4G1 共定位,并在 G3BP 双 KO 细胞中恢复了 SG 的形成。AtG3BP-1 和 -7 与已知的人类 G3BP 相互作用伙伴如 Caprin-1 和 USP10 之间的相互作用也通过共免疫沉淀得到证实。此外,拟南芥 G3BP 的 RG/RGG 结构域交换到人类 G3BP 背景中显示出互补的能力。总之,我们的结果支持 SG 功能在不同生物界之间存在保守机制,这将有助于进一步阐明拟南芥 G3BP 蛋白家族的生物学功能。