Bandyopadhyay Sanghamitra
Developmental Toxicology Laboratory, Systems Toxicology & Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, India.
Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.
Front Aging Neurosci. 2021 Jun 15;13:653334. doi: 10.3389/fnagi.2021.653334. eCollection 2021.
Amyloidogenicity and vascular dysfunction are the key players in the pathogenesis of Alzheimer's disease (AD), involving dysregulated cellular interactions. An intricate balance between neurons, astrocytes, microglia, oligodendrocytes and vascular cells sustains the normal neuronal circuits. Conversely, cerebrovascular diseases overlap neuropathologically with AD, and glial dyshomeostasis promotes AD-associated neurodegenerative cascade. While pathological hallmarks of AD primarily include amyloid-β (Aβ) plaques and neurofibrillary tangles, microvascular disorders, altered cerebral blood flow (CBF), and blood-brain barrier (BBB) permeability induce neuronal loss and synaptic atrophy. Accordingly, microglia-mediated inflammation and astrogliosis disrupt the homeostasis of the neuro-vascular unit and stimulate infiltration of circulating leukocytes into the brain. Large-scale genetic and epidemiological studies demonstrate a critical role of cellular crosstalk for altered immune response, metabolism, and vasculature in AD. The glia associated genetic risk factors include , , , , , and , which correlate with the deposition and altered phagocytosis of Aβ. Moreover, aging-dependent downregulation of astrocyte and microglial Aβ-degrading enzymes limits the neurotrophic and neurogenic role of glial cells and inhibits lysosomal degradation and clearance of Aβ. Microglial cells secrete IGF-1, and neurons show a reduced responsiveness to the neurotrophic IGF-1R/IRS-2/PI3K signaling pathway, generating amyloidogenic and vascular dyshomeostasis in AD. Glial signals connect to neural stem cells, and a shift in glial phenotype over the AD trajectory even affects adult neurogenesis and the neurovascular niche. Overall, the current review informs about the interaction of neuronal and glial cell types in AD pathogenesis and its critical association with cerebrovascular dysfunction.
淀粉样变性和血管功能障碍是阿尔茨海默病(AD)发病机制中的关键因素,涉及细胞间相互作用失调。神经元、星形胶质细胞、小胶质细胞、少突胶质细胞和血管细胞之间复杂的平衡维持着正常的神经回路。相反,脑血管疾病在神经病理学上与AD重叠,胶质细胞内环境稳态失衡会促进AD相关的神经退行性级联反应。虽然AD的病理特征主要包括淀粉样β(Aβ)斑块和神经原纤维缠结,但微血管疾病、脑血流量(CBF)改变和血脑屏障(BBB)通透性会导致神经元丢失和突触萎缩。因此,小胶质细胞介导的炎症和星形胶质细胞增生会破坏神经血管单元的稳态,并刺激循环白细胞渗入大脑。大规模的遗传学和流行病学研究表明,细胞间相互作用在AD的免疫反应、代谢和血管系统改变中起关键作用。与胶质细胞相关的遗传风险因素包括 、 、 、 、 和 ,它们与Aβ的沉积和吞噬作用改变相关。此外,衰老导致星形胶质细胞和小胶质细胞Aβ降解酶的下调,限制了胶质细胞的神经营养和神经发生作用,并抑制了Aβ的溶酶体降解和清除。小胶质细胞分泌胰岛素样生长因子-1(IGF-1),而神经元对神经营养性IGF-1R/IRS-2/PI3K信号通路的反应性降低,在AD中产生淀粉样变性和血管内环境稳态失衡。胶质细胞信号与神经干细胞相连,AD病程中胶质细胞表型的转变甚至会影响成体神经发生和神经血管微环境。总体而言,本综述阐述了AD发病机制中神经元和胶质细胞类型之间的相互作用及其与脑血管功能障碍的关键关联。