Suppr超能文献

基于无人机图像的油菜花期表型分析及种子产量估算

Phenotyping Flowering in Canola ( L.) and Estimating Seed Yield Using an Unmanned Aerial Vehicle-Based Imagery.

作者信息

Zhang Ti, Vail Sally, Duddu Hema S N, Parkin Isobel A P, Guo Xulin, Johnson Eric N, Shirtliffe Steven J

机构信息

Department of Plant Sciences, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, SK, Canada.

Saskatoon Research and Development Center, Agriculture and Agri-Food Canada, Saskatoon, SK, Canada.

出版信息

Front Plant Sci. 2021 Jun 17;12:686332. doi: 10.3389/fpls.2021.686332. eCollection 2021.

Abstract

Phenotyping crop performance is critical for line selection and variety development in plant breeding. Canola ( L.) flowers, the bright yellow flowers, indeterminately increase over a protracted period. Flower production of canola plays an important role in yield determination. Yellowness of canola petals may be a critical reflectance signal and a good predictor of pod number and, therefore, seed yield. However, quantifying flowering based on traditional visual scales is subjective, time-consuming, and labor-consuming. Recent developments in phenotyping technologies using Unmanned Aerial Vehicles (UAVs) make it possible to effectively capture crop information and to predict crop yield imagery. Our objectives were to investigate the application of vegetation indices in estimating canola flower numbers and to develop a descriptive model of canola seed yield. Fifty-six diverse genotypes, including 53 lines, two lines, and a variety, were grown near Saskatoon, SK, Canada from 2016 to 2018 and near Melfort and Scott, SK, Canada in 2017. Aerial imagery with geometric and radiometric corrections was collected through the flowering stage using a UAV mounted with a multispectral camera. We found that the normalized difference yellowness index (NDYI) was a useful vegetation index for representing canola yellowness, which is related to canola flowering intensity during the full flowering stage. However, the flowering pixel number estimated by the thresholding method improved the ability of NDYI to detect yellow flowers with coefficient of determination ( ) ranging from 0.54 to 0.95. Moreover, compared with using a single image date, the NDYI-based flowering pixel numbers integrated over time covers more growth information and can be a good predictor of pod number and thus, canola yield with up to 0.42. These results indicate that NDYI-based flowering pixel numbers can perform well in estimating flowering intensity. Integrated flowering intensity extracted from imagery over time can be a potential phenotype associated with canola seed yield.

摘要

对作物表现进行表型分析对于植物育种中的品系选择和品种培育至关重要。油菜(L.)的花朵为亮黄色,在较长时期内持续不定量地增加。油菜的花产量在产量决定中起着重要作用。油菜花瓣的黄色可能是一个关键的反射信号,也是荚果数量以及种子产量的良好预测指标。然而,基于传统视觉尺度对开花进行量化具有主观性、耗时且费力。使用无人机(UAV)的表型技术的最新发展使得有效获取作物信息和预测作物产量图像成为可能。我们的目标是研究植被指数在估算油菜花朵数量方面的应用,并建立一个油菜种子产量的描述模型。2016年至2018年,在加拿大萨斯喀彻温省萨斯卡通附近种植了56个不同的基因型,包括53个品系、2个品系和1个品种,2017年在加拿大萨斯喀彻温省梅尔福特和斯科特附近也进行了种植。在开花期,使用搭载多光谱相机的无人机收集经过几何和辐射校正的航空图像。我们发现归一化差异黄度指数(NDYI)是用于表示油菜黄度的有用植被指数,它与盛花期油菜的开花强度相关。然而,可以通过阈值法估计开花像素数量,这提高了NDYI检测黄色花朵的能力,决定系数()范围为0.54至0.95。此外,与使用单个图像日期相比,基于NDYI的随时间积分的开花像素数量涵盖了更多生长信息,并且可以很好地预测荚果数量,进而预测油菜产量,相关系数高达0.42。这些结果表明基于NDYI的开花像素数量在估算开花强度方面表现良好。随时间从图像中提取的综合开花强度可能是与油菜种子产量相关的潜在表型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e8a/8249318/987f2b44d9ff/fpls-12-686332-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验