Xiao Dong, Zang Zhenya, Sapermsap Natakorn, Wang Quan, Xie Wujun, Chen Yu, Uei Li David Day
Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, Scotland, UK.
Department of Biomedical Engineering, University of Strathclyde, Glasgow G1 1XQ, Scotland, UK.
Biomed Opt Express. 2021 May 17;12(6):3450-3462. doi: 10.1364/BOE.425663. eCollection 2021 Jun 1.
Measuring fluorescence lifetimes of fast-moving cells or particles have broad applications in biomedical sciences. This paper presents a dynamic fluorescence lifetime sensing (DFLS) system based on the time-correlated single-photon counting (TCSPC) principle. It integrates a CMOS 192 × 128 single-photon avalanche diode (SPAD) array, offering an enormous photon-counting throughput without pile-up effects. We also proposed a quantized convolutional neural network (QCNN) algorithm and designed a field-programmable gate array embedded processor for fluorescence lifetime determinations. The processor uses a simple architecture, showing unparallel advantages in accuracy, analysis speed, and power consumption. It can resolve fluorescence lifetimes against disturbing noise. We evaluated the DFLS system using fluorescence dyes and fluorophore-tagged microspheres. The system can effectively measure fluorescence lifetimes within a single exposure period of the SPAD sensor, paving the way for portable time-resolved devices and shows potential in various applications.
测量快速移动细胞或颗粒的荧光寿命在生物医学科学领域有着广泛的应用。本文提出了一种基于时间相关单光子计数(TCSPC)原理的动态荧光寿命传感(DFLS)系统。该系统集成了一个192×128的互补金属氧化物半导体(CMOS)单光子雪崩二极管(SPAD)阵列,可实现巨大的光子计数通量且无堆积效应。我们还提出了一种量化卷积神经网络(QCNN)算法,并设计了一种用于荧光寿命测定的现场可编程门阵列嵌入式处理器。该处理器采用简单架构,在准确性、分析速度和功耗方面具有无可比拟的优势。它能够在存在干扰噪声的情况下解析荧光寿命。我们使用荧光染料和荧光团标记的微球对DFLS系统进行了评估。该系统能够在SPAD传感器的单次曝光周期内有效测量荧光寿命,为便携式时间分辨设备铺平了道路,并在各种应用中显示出潜力。