Wang J, Zhang P, Xia Q, Wei Y, Chen W, Wang J, Li P, Li B, Zhou X
Schoolof Physics Science and Technology, Ningbo University, Ningbo 315211, China.
Laboratory of Physical Biology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China.
Nan Fang Yi Ke Da Xue Xue Bao. 2021 Jun 20;41(6):960-964. doi: 10.12122/j.issn.1673-4254.2021.06.22.
The development of DNA nanotechnology make it possible to artificially generate complex nucleic acid nanostructures with controllable sizes and shapes. DNA origami emerges as an effective and versatile approach to construct two- and three-dimensional programmable nanostructures, and represents a milestone in the development of structural DNA nanotechnology. Due to its high degree of controllable geometry, spatial addressability, easy chemical modification and good biocompatibility, DNA origami has great potentials for applications in many fields. In this review, we briefly summarize the applications of DNA origami in antigen-antibody interaction, targeted drug delivery and the synthesis of biomaterials.
DNA纳米技术的发展使人工生成具有可控尺寸和形状的复杂核酸纳米结构成为可能。DNA折纸术作为一种构建二维和三维可编程纳米结构的有效且通用的方法应运而生,代表了结构性DNA纳米技术发展中的一个里程碑。由于其高度可控的几何形状、空间可寻址性、易于化学修饰以及良好的生物相容性,DNA折纸术在许多领域具有巨大的应用潜力。在本综述中,我们简要总结了DNA折纸术在抗原-抗体相互作用、靶向药物递送和生物材料合成中的应用。