Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743, Jena, Germany.
Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany.
Angew Chem Int Ed Engl. 2021 Mar 15;60(12):6218-6229. doi: 10.1002/anie.202005907. Epub 2020 Oct 28.
The combination of DNA origami nanostructures and polymers provides a new possibility to access defined structures in the 100 nm range. In general, DNA origami serves as a versatile template for the highly specific arrangement of polymer chains. Polymer-DNA hybrid nanostructures can either be created by growing the polymer from the DNA template or by attaching preformed polymers to the DNA scaffold. These conjugations can be of a covalent nature or be based on base-pair hybridization between respectively modified polymers and DNA origami. Furthermore, the negatively charged DNA backbone permits interaction with positively charged polyelectrolytes to form stable complexes. The combination of polymers with tuneable characteristics and DNA origami allows the creation of a new class of hybrid materials, which could offer exciting applications for controlled energy transfer, nanoscale organic circuits, or the templated synthesis of nanopatterned polymeric structures.
DNA 折纸纳米结构与聚合物的结合为在 100nm 范围内获得确定结构提供了新的可能性。一般来说,DNA 折纸术是高度特异性排列聚合物链的通用模板。聚合物-DNA 杂化纳米结构可以通过从 DNA 模板上生长聚合物或通过将预先形成的聚合物附着到 DNA 支架上来创建。这些缀合可以是共价性质的,也可以基于分别修饰的聚合物和 DNA 折纸术之间的碱基对杂交。此外,带负电荷的 DNA 骨架允许与带正电荷的聚电解质相互作用,形成稳定的复合物。具有可调特性的聚合物与 DNA 折纸术的结合可以创造出一类新的杂化材料,这些材料可能为控制能量转移、纳米级有机电路或模板合成纳米图案化聚合物结构提供令人兴奋的应用。