Suppr超能文献

飞沫命运、口罩效能及会议室中载有病毒飞沫的传播

Droplet fate, efficacy of face mask, and transmission of virus-laden droplets inside a conference room.

作者信息

Mirikar Dnyanesh, Palanivel Silambarasan, Arumuru Venugopal

机构信息

Applied Fluids Group, School of Mechanical Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar 752050, India.

出版信息

Phys Fluids (1994). 2021 Jun;33(6):065108. doi: 10.1063/5.0054110. Epub 2021 Jun 3.

Abstract

The second and third waves of coronavirus disease-2019 (COVID-19) pandemic have hit the world. Even after more than a year, the economy is yet to return to a semblance of normality. The conference/meeting room is one of the critical sections of offices that might be difficult not to use. This study analyzes the distribution of the virus-laden droplets expelled by coughing inside a conference room, the effect of ventilation rates, and their positioning. The efficacy of masks is studied to get quantitative information regarding the residence time of the droplets. The effects of evaporation, turbulent dispersion, and external forces have been considered for calculating the droplets' trajectories. We have analyzed six cases, of which two are with masks. Change in the ventilation rate from four air changes per hour (ACH) to eight resulted in a increment in the number of droplets entrained in the outlet vent, while their average residence time was reduced by . The shift in the vents' location has significantly altered droplets' distribution inside a conference room. It results in of the injected droplets reaching persons sitting across the table, and a similar indoor environment is not recommended. Wearing a mask in the case of eight ACH has presented the best scenario out of the six cases, with a improvement in the number of droplets entrained in the outlet vent and a decrease in their average residence time compared to the case without a mask. No droplets have reached persons sitting across the table when the infected person is wearing the mask, which follows that a social distancing of with a mask is adequate in indoor environments.

摘要

新型冠状病毒肺炎(COVID-19)疫情的第二波和第三波已经席卷全球。即使经过了一年多的时间,经济仍未恢复到正常状态。会议室是办公室中至关重要的区域之一,很难不被使用。本研究分析了会议室中咳嗽时喷出的载有病毒的飞沫分布、通风率的影响及其位置。研究了口罩的功效,以获取有关飞沫停留时间的定量信息。在计算飞沫轨迹时考虑了蒸发、湍流扩散和外力的影响。我们分析了六个案例,其中两个案例涉及佩戴口罩的情况。通风率从每小时换气4次(ACH)增加到8次,导致排风口夹带的飞沫数量增加,而飞沫的平均停留时间减少了 。通风口位置的改变显著改变了会议室内部飞沫的分布。这导致 的喷射飞沫会到达坐在桌子对面的人,因此不建议设置类似的室内环境。在六种情况中,每小时换气8次(ACH)时佩戴口罩是最佳情形,与不戴口罩的情况相比,排风口夹带的飞沫数量增加了 ,飞沫平均停留时间减少了 。当感染者佩戴口罩时,没有飞沫会到达坐在桌子对面的人,这表明在室内环境中,佩戴口罩保持 的社交距离就足够了。

相似文献

1
Droplet fate, efficacy of face mask, and transmission of virus-laden droplets inside a conference room.
Phys Fluids (1994). 2021 Jun;33(6):065108. doi: 10.1063/5.0054110. Epub 2021 Jun 3.
2
What is suitable social distancing for people wearing face masks during the COVID-19 pandemic?
Indoor Air. 2022 Jan;32(1):e12935. doi: 10.1111/ina.12935. Epub 2021 Oct 4.
3
On respiratory droplets and face masks.
Phys Fluids (1994). 2020 Jun 1;32(6):063303. doi: 10.1063/5.0015044.
4
Role of face masks and ventilation rates in mitigating respiratory disease transmission in ICU.
Sci Rep. 2023 Jul 10;13(1):11124. doi: 10.1038/s41598-023-38031-x.
7
Risk assessment of airborne virus transmission in an intensive care unit due to single and sequential coughing.
Risk Anal. 2024 Jan;44(1):54-69. doi: 10.1111/risa.14133. Epub 2023 Apr 10.
8
Consideration on size, velocity and path of droplets emitted during running.
J Sports Med Phys Fitness. 2023 Oct;63(10):1100-1117. doi: 10.23736/S0022-4707.23.14923-1. Epub 2023 Jul 10.
9
Face coverings and respiratory tract droplet dispersion.
R Soc Open Sci. 2020 Dec 23;7(12):201663. doi: 10.1098/rsos.201663. eCollection 2020 Dec.
10
[Use of masks by children to prevent infection with SARS-CoV-2].
Monatsschr Kinderheilkd. 2021;169(1):52-56. doi: 10.1007/s00112-020-01090-9. Epub 2020 Dec 18.

引用本文的文献

1
A review on indoor airborne transmission of COVID-19- modelling and mitigation approaches.
J Build Eng. 2023 Apr 1;64:105599. doi: 10.1016/j.jobe.2022.105599. Epub 2022 Nov 26.
2
Effects of recirculation and air change per hour on COVID-19 transmission in indoor settings: A CFD study with varying HVAC parameters.
Heliyon. 2024 Jul 23;10(15):e35092. doi: 10.1016/j.heliyon.2024.e35092. eCollection 2024 Aug 15.
4
Understanding lifetime and dispersion of cough-emitted droplets in air.
Indoor Built Environ. 2023 Dec;32(10):1929-1948. doi: 10.1177/1420326X221098753. Epub 2022 May 18.
5
Characterizing infection risk in a restaurant environment due to airborne diseases using discrete droplet dispersion simulations.
Heliyon. 2023 Oct 4;9(10):e20540. doi: 10.1016/j.heliyon.2023.e20540. eCollection 2023 Oct.
6
Improving Indoor Air Ventilation by a Ceiling Fan to Mitigate Aerosols Transmission.
Trans Indian Natl Acad Eng. 2023;8(1):171-182. doi: 10.1007/s41403-023-00387-x. Epub 2023 Jan 31.
8
Relative assessment of cloth mask protection against ballistic droplets: A frugal approach.
PLoS One. 2022 Oct 4;17(10):e0275376. doi: 10.1371/journal.pone.0275376. eCollection 2022.
10
Numerical evaluation of face masks for prevention of COVID-19 airborne transmission.
Environ Sci Pollut Res Int. 2022 Jun;29(29):44939-44953. doi: 10.1007/s11356-022-18587-3. Epub 2022 Feb 9.

本文引用的文献

1
Numerical modeling of the distribution of virus carrying saliva droplets during sneeze and cough.
Phys Fluids (1994). 2020 Aug 1;32(8):083305. doi: 10.1063/5.0018432. Epub 2020 Aug 11.
2
Effects of ventilation on the indoor spread of COVID-19.
J Fluid Mech. 2020 Sep 28;903:F1. doi: 10.1017/jfm.2020.720.
3
Computer simulation of the SARS-CoV-2 contamination risk in a large dental clinic.
Phys Fluids (1994). 2021 Mar;33(3):033328. doi: 10.1063/5.0043934. Epub 2021 Mar 29.
4
Simulation of aerosol transmission on a Boeing 737 airplane with intervention measures for COVID-19 mitigation.
Phys Fluids (1994). 2021 Mar 1;33(3):033312. doi: 10.1063/5.0044720. Epub 2021 Mar 16.
5
On airborne virus transmission in elevators and confined spaces.
Phys Fluids (1994). 2021 Jan 1;33(1):011905. doi: 10.1063/5.0038180. Epub 2021 Jan 26.
7
Numerical study of virus transmission through droplets from sneezing in a cafeteria.
Phys Fluids (1994). 2021 Feb;33(2):023311. doi: 10.1063/5.0040803. Epub 2021 Feb 25.
8
Simulation-based study of COVID-19 outbreak associated with air-conditioning in a restaurant.
Phys Fluids (1994). 2021 Feb 1;33(2):023301. doi: 10.1063/5.0040188. Epub 2021 Feb 9.
9
Disease transmission through expiratory aerosols on an urban bus.
Phys Fluids (1994). 2021 Jan 1;33(1):015116. doi: 10.1063/5.0037452. Epub 2021 Jan 12.
10
Looking beyond COVID-19 vaccine phase 3 trials.
Nat Med. 2021 Feb;27(2):205-211. doi: 10.1038/s41591-021-01230-y. Epub 2021 Jan 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验