Suppr超能文献

高脂饮食的严重后果包括硫化氢功能障碍以及胶质母细胞瘤中侵袭性增强。

Severe consequences of a high-lipid diet include hydrogen sulfide dysfunction and enhanced aggression in glioblastoma.

作者信息

Silver Daniel J, Roversi Gustavo A, Bithi Nazmin, Wang Sabrina Z, Troike Katie M, Neumann Chase Ka, Ahuja Grace K, Reizes Ofer, Brown J Mark, Hine Christopher, Lathia Justin D

机构信息

Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner Research Institute, Cleveland, United States of America.

Medical Scientist Training Program, Case Western Reserve University, Cleveland, United States of America.

出版信息

J Clin Invest. 2021 Jul 13;131(17). doi: 10.1172/JCI138276.

Abstract

Glioblastoma (GBM) remains among the deadliest of human malignancies, and the emergence of the cancer stem cell (CSC) phenotype represents a major challenge to durable treatment response. Because the environmental and lifestyle factors that impact CSC populations are not clear, we sought to understand the consequences of diet on CSC enrichment. We evaluated disease progression in mice fed an obesity-inducing high-fat diet (HFD) versus a low-fat, control diet. HFD resulted in hyper-aggressive disease accompanied by CSC enrichment and shortened survival. HFD drove intracerebral accumulation of saturated fats, which inhibited the production of the cysteine metabolite and gasotransmitter, hydrogen sulfide (H2S). H2S functions principally through protein S-sulfhydration and regulates multiple programs including bioenergetics and metabolism. Inhibition of H2S increased proliferation and chemotherapy resistance, whereas treatment with H2S donors led to death of cultured GBM cells and stasis of GBM tumors in vivo. Syngeneic GBM models and GBM patient specimens present an overall reduction in protein S-sulfhydration, primarily associated with proteins regulating cellular metabolism. These findings provide clear evidence that diet modifiable H2S signaling serves to suppress GBM by restricting metabolic fitness, while its loss triggers CSC enrichment and disease acceleration. Interventions augmenting H2S bioavailability concurrent with GBM standard of care may improve outcomes for GBM patients.

摘要

胶质母细胞瘤(GBM)仍然是人类最致命的恶性肿瘤之一,癌症干细胞(CSC)表型的出现对持久的治疗反应构成了重大挑战。由于影响CSC群体的环境和生活方式因素尚不清楚,我们试图了解饮食对CSC富集的影响。我们评估了喂食致肥胖高脂肪饮食(HFD)与低脂对照饮食的小鼠的疾病进展情况。HFD导致疾病高度侵袭性,伴有CSC富集和生存期缩短。HFD促使饱和脂肪在脑内蓄积,抑制了半胱氨酸代谢产物和气体信号分子硫化氢(H2S)的产生。H2S主要通过蛋白质S-硫氢化作用发挥功能,并调节包括生物能量学和代谢在内的多个程序。抑制H2S会增加细胞增殖和化疗耐药性,而用H2S供体进行治疗会导致培养的GBM细胞死亡以及体内GBM肿瘤停滞。同基因GBM模型和GBM患者标本显示蛋白质S-硫氢化作用总体减少,主要与调节细胞代谢的蛋白质有关。这些发现提供了明确的证据,即饮食可调节的H2S信号通过限制代谢适应性来抑制GBM,而其缺失会触发CSC富集和疾病加速。在GBM标准治疗的同时增加H2S生物利用度的干预措施可能会改善GBM患者的预后。

相似文献

2
Hydrogen sulfide operates as a glioblastoma suppressor and is lost under high fat diet.
Mol Cell Oncol. 2021 Sep 16;8(4):1973312. doi: 10.1080/23723556.2021.1973312. eCollection 2021.
4
Hydrogen sulfide regulates circadian-clock genes in CC myotubes and the muscle of high-fat-diet-fed mice.
Arch Biochem Biophys. 2019 Sep 15;672:108054. doi: 10.1016/j.abb.2019.07.019. Epub 2019 Jul 24.
8
Cystathionine gamma-lyase/hydrogen sulfide system is essential for adipogenesis and fat mass accumulation in mice.
Biochim Biophys Acta Mol Cell Biol Lipids. 2018 Feb;1863(2):165-176. doi: 10.1016/j.bbalip.2017.11.008. Epub 2017 Nov 28.
9
Hydrogen sulfide attenuates high fat diet-induced cardiac dysfunction via the suppression of endoplasmic reticulum stress.
Nitric Oxide. 2015 Apr 30;46:145-56. doi: 10.1016/j.niox.2014.12.013. Epub 2015 Jan 6.

引用本文的文献

1
Environmental Hazards and Glial Brain Tumors: Association or Causation?
Int J Mol Sci. 2025 Aug 1;26(15):7425. doi: 10.3390/ijms26157425.
3
Plasma lipidomic and metabolomic profiles in high-grade glioma patients before and after 72-h presurgery water-only fasting.
Mol Oncol. 2025 Aug;19(8):2249-2269. doi: 10.1002/1878-0261.70003. Epub 2025 Feb 24.
4
Diet-Modifiable Redox Alterations in Ageing and Cancer.
Subcell Biochem. 2024;107:129-172. doi: 10.1007/978-3-031-66768-8_7.
5
CB2R activation enhances tumor-associated macrophages-mediated phagocytosis of glioma cell.
Heliyon. 2024 Nov 28;10(23):e40806. doi: 10.1016/j.heliyon.2024.e40806. eCollection 2024 Dec 15.
6
Metabolism: an important player in glioma survival and development.
Discov Oncol. 2024 Oct 22;15(1):577. doi: 10.1007/s12672-024-01402-5.
8
Mutations in the TP53, VEGFA, and CTH Genes as Key Molecular Markers for the Diagnosis of Glioblastoma.
Cureus. 2024 May 27;16(5):e61165. doi: 10.7759/cureus.61165. eCollection 2024 May.
9
The Lipidomic Signature of Glioblastoma: A Promising Frontier in Cancer Research.
Cancers (Basel). 2024 Mar 8;16(6):1089. doi: 10.3390/cancers16061089.
10
Cysteine induces mitochondrial reductive stress in glioblastoma through hydrogen peroxide production.
Proc Natl Acad Sci U S A. 2024 Feb 20;121(8):e2317343121. doi: 10.1073/pnas.2317343121. Epub 2024 Feb 15.

本文引用的文献

3
Metabolic heterogeneity and adaptability in brain tumors.
Cell Mol Life Sci. 2020 Dec;77(24):5101-5119. doi: 10.1007/s00018-020-03569-w. Epub 2020 Jun 6.
4
MBOAT7-driven phosphatidylinositol remodeling promotes the progression of clear cell renal carcinoma.
Mol Metab. 2020 Apr;34:136-145. doi: 10.1016/j.molmet.2020.01.011. Epub 2020 Feb 3.
5
Altered cellular metabolism in gliomas - an emerging landscape of actionable co-dependency targets.
Nat Rev Cancer. 2020 Jan;20(1):57-70. doi: 10.1038/s41568-019-0226-5. Epub 2019 Dec 5.
6
Targeting pyrimidine synthesis accentuates molecular therapy response in glioblastoma stem cells.
Sci Transl Med. 2019 Aug 7;11(504). doi: 10.1126/scitranslmed.aau4972.
8
The Gut-Brain Axis, Paving the Way to Brain Cancer.
Trends Cancer. 2019 Apr;5(4):200-207. doi: 10.1016/j.trecan.2019.02.008. Epub 2019 Mar 16.
9
Diet and risk of glioma: combined analysis of 3 large prospective studies in the UK and USA.
Neuro Oncol. 2019 Jul 11;21(7):944-952. doi: 10.1093/neuonc/noz013.
10
Infiltrative and drug-resistant slow-cycling cells support metabolic heterogeneity in glioblastoma.
EMBO J. 2018 Dec 3;37(23). doi: 10.15252/embj.201798772. Epub 2018 Oct 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验