Suppr超能文献

基于智能手机传感器的多发性硬化症数字结局评估。

A smartphone sensor-based digital outcome assessment of multiple sclerosis.

机构信息

Department of Neurology-Neuroimmunology, Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Hospital Universitari Vall d'Hebron, Barcelona, Spain.

Department of Neurosciences, University of California San Diego, San Diego, CA, USA.

出版信息

Mult Scler. 2022 Apr;28(4):654-664. doi: 10.1177/13524585211028561. Epub 2021 Jul 14.

Abstract

BACKGROUND

Sensor-based monitoring tools fill a critical gap in multiple sclerosis (MS) research and clinical care.

OBJECTIVE

The aim of this study is to assess performance characteristics of the Floodlight Proof-of-Concept (PoC) app.

METHODS

In a 24-week study (clinicaltrials.gov: NCT02952911), smartphone-based active tests and passive monitoring assessed cognition (electronic Symbol Digit Modalities Test), upper extremity function (Pinching Test, Draw a Shape Test), and gait and balance (Static Balance Test, U-Turn Test, Walk Test, Passive Monitoring). Intraclass correlation coefficients (ICCs) and age- or sex-adjusted Spearman's rank correlation determined test-retest reliability and correlations with clinical and magnetic resonance imaging (MRI) outcome measures, respectively.

RESULTS

Seventy-six people with MS (PwMS) and 25 healthy controls were enrolled. In PwMS, ICCs were moderate-to-good (ICC(2,1) = 0.61-0.85) across tests. Correlations with domain-specific standard clinical disability measures were significant for all tests in the cognitive ( = 0.82, < 0.001), upper extremity function (|r|= 0.40-0.64, all < 0.001), and gait and balance domains ( = -0.25 to -0.52, all < 0.05; except for Static Balance Test: = -0.20, > 0.05). Most tests also correlated with Expanded Disability Status Scale, 29-item Multiple Sclerosis Impact Scale items or subscales, and/or normalized brain volume.

CONCLUSION

The Floodlight PoC app captures reliable and clinically relevant measures of functional impairment in MS, supporting its potential use in clinical research and practice.

摘要

背景

基于传感器的监测工具在多发性硬化症(MS)研究和临床护理中填补了一个关键空白。

目的

本研究旨在评估 Floodlight 概念验证(PoC)应用程序的性能特征。

方法

在一项 24 周的研究中(clinicaltrials.gov:NCT02952911),基于智能手机的主动测试和被动监测评估了认知(电子符号数字模态测试)、上肢功能(捏合测试、绘图测试)和步态和平衡(静态平衡测试、U 型转弯测试、行走测试、被动监测)。分别采用组内相关系数(ICC)和年龄或性别调整的斯皮尔曼等级相关来确定测试-重测信度以及与临床和磁共振成像(MRI)结果测量的相关性。

结果

共有 76 名多发性硬化症患者(PwMS)和 25 名健康对照者入组。在 PwMS 中,各项测试的 ICC 为中度至良好(ICC(2,1) = 0.61-0.85)。与特定领域的标准临床残疾测量相关的相关性在认知领域( = 0.82,<0.001)、上肢功能(|r|= 0.40-0.64,均<0.001)和步态和平衡领域( = -0.25 至-0.52,均<0.05;除静态平衡测试外: = -0.20,>0.05)均具有显著相关性。大多数测试还与扩展残疾状况量表、29 项多发性硬化症影响量表项目或子量表以及/或归一化脑体积相关。

结论

Floodlight PoC 应用程序可捕获多发性硬化症患者功能障碍的可靠和临床相关测量结果,支持其在临床研究和实践中的潜在应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a685/8961252/91f62f148513/10.1177_13524585211028561-fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验