文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于全 slides 病理图像的弱监督深度序贯 Cox 模型进行生存预测。

Weakly Supervised Deep Ordinal Cox Model for Survival Prediction From Whole-Slide Pathological Images.

出版信息

IEEE Trans Med Imaging. 2021 Dec;40(12):3739-3747. doi: 10.1109/TMI.2021.3097319. Epub 2021 Nov 30.


DOI:10.1109/TMI.2021.3097319
PMID:34264823
Abstract

Whole-Slide Histopathology Image (WSI) is generally considered the gold standard for cancer diagnosis and prognosis. Given the large inter-operator variation among pathologists, there is an imperative need to develop machine learning models based on WSIs for consistently predicting patient prognosis. The existing WSI-based prediction methods do not utilize the ordinal ranking loss to train the prognosis model, and thus cannot model the strong ordinal information among different patients in an efficient way. Another challenge is that a WSI is of large size (e.g., 100,000-by-100,000 pixels) with heterogeneous patterns but often only annotated with a single WSI-level label, which further complicates the training process. To address these challenges, we consider the ordinal characteristic of the survival process by adding a ranking-based regularization term on the Cox model and propose a weakly supervised deep ordinal Cox model (BDOCOX) for survival prediction from WSIs. Here, we generate amounts of bags from WSIs, and each bag is comprised of the image patches representing the heterogeneous patterns of WSIs, which is assumed to match the WSI-level labels for training the proposed model. The effectiveness of the proposed method is well validated by theoretical analysis as well as the prognosis and patient stratification results on three cancer datasets from The Cancer Genome Atlas (TCGA).

摘要

全切片组织病理学图像(WSI)通常被认为是癌症诊断和预后的金标准。鉴于病理学家之间存在较大的操作者间差异,因此迫切需要基于 WSI 开发机器学习模型,以持续预测患者的预后。现有的基于 WSI 的预测方法没有利用有序排名损失来训练预后模型,因此无法有效地对不同患者之间的强有序信息进行建模。另一个挑战是,WSI 尺寸较大(例如,100,000 像素×100,000 像素),且具有异质模式,但通常仅标注有单个 WSI 级别的标签,这进一步增加了训练过程的复杂性。为了解决这些挑战,我们通过在 Cox 模型上添加基于排序的正则化项来考虑生存过程的有序特征,并提出了一种基于弱监督的深度有序 Cox 模型(BDOCOX),用于从 WSI 进行生存预测。在这里,我们从 WSI 中生成大量的袋子,每个袋子都包含代表 WSI 异质模式的图像补丁,这些补丁被认为与 WSI 级别的标签匹配,用于训练所提出的模型。通过理论分析以及对来自癌症基因组图谱(TCGA)的三个癌症数据集的预后和患者分层结果,验证了该方法的有效性。

相似文献

[1]
Weakly Supervised Deep Ordinal Cox Model for Survival Prediction From Whole-Slide Pathological Images.

IEEE Trans Med Imaging. 2021-12

[2]
Weakly Supervised Deep Learning for Whole Slide Lung Cancer Image Analysis.

IEEE Trans Cybern. 2020-9

[3]
Masked hypergraph learning for weakly supervised histopathology whole slide image classification.

Comput Methods Programs Biomed. 2024-8

[4]
Cancer Survival Prediction From Whole Slide Images With Self-Supervised Learning and Slide Consistency.

IEEE Trans Med Imaging. 2023-5

[5]
Combining weakly and strongly supervised learning improves strong supervision in Gleason pattern classification.

BMC Med Imaging. 2021-5-8

[6]
Semi-supervised training of deep convolutional neural networks with heterogeneous data and few local annotations: An experiment on prostate histopathology image classification.

Med Image Anal. 2021-10

[7]
Automatic diagnosis and grading of Prostate Cancer with weakly supervised learning on whole slide images.

Comput Biol Med. 2023-1

[8]
Histopathology classification and localization of colorectal cancer using global labels by weakly supervised deep learning.

Comput Med Imaging Graph. 2021-3

[9]
Generating region proposals for histopathological whole slide image retrieval.

Comput Methods Programs Biomed. 2018-2-23

[10]
Attention2Minority: A salient instance inference-based multiple instance learning for classifying small lesions in whole slide images.

Comput Biol Med. 2023-12

引用本文的文献

[1]
Pancancer outcome prediction via a unified weakly supervised deep learning model.

Signal Transduct Target Ther. 2025-9-3

[2]
Knowledge-Informed Machine Learning for Cancer Diagnosis and Prognosis: A Review.

IEEE Trans Autom Sci Eng. 2025

[3]
Multimodal multi-instance evidence fusion neural networks for cancer survival prediction.

Sci Rep. 2025-3-26

[4]
Deep learning-driven survival prediction in pan-cancer studies by integrating multimodal histology-genomic data.

Brief Bioinform. 2025-3-4

[5]
A foundation model for generalizable cancer diagnosis and survival prediction from histopathological images.

Nat Commun. 2025-3-10

[6]
Interpretable Multimodal Fusion Model for Bridged Histology and Genomics Survival Prediction in Pan-Cancer.

Adv Sci (Weinh). 2025-5

[7]
Decoding pathology: the role of computational pathology in research and diagnostics.

Pflugers Arch. 2025-4

[8]
Nuclei-level prior knowledge constrained multiple instance learning for breast histopathology whole slide image classification.

iScience. 2024-4-26

[9]
Specific mortality in patients with diffuse large B-cell lymphoma: a retrospective analysis based on the surveillance, epidemiology, and end results database.

Eur J Med Res. 2024-4-20

[10]
The construction, validation and promotion of the nomogram prognosis prediction model of UCEC, and the experimental verification of the expression and knockdown of the key gene GPX4.

Heliyon. 2024-1-20

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索