Xu Yadong, Fei Qihui, Page Margaret, Zhao Ganggang, Ling Yun, Stoll Samuel B, Yan Zheng
Department of Biomedical, Biological & Chemical Engineering, University of Missouri, Columbia, MO 65211, USA.
Department of Mechanical & Aerospace Engineering, University of Missouri, Columbia, MO 65211, USA.
iScience. 2021 Jun 17;24(7):102736. doi: 10.1016/j.isci.2021.102736. eCollection 2021 Jul 23.
Skin-interfaced wearable electronics can find a broad spectrum of applications in healthcare, human-machine interface, robotics, and others. The state-of-the-art wearable electronics usually suffer from costly and complex fabrication procedures and nonbiodegradable polymer substrates. Paper, comprising entangled micro- or nano-scale cellulose fibers, is compatible with scalable fabrication techniques and emerges as a sustainable, inexpensive, disposable, and biocompatible substrate for wearable electronics. Given various attractive properties (e.g., breathability, flexibility, biocompatibility, and biodegradability) and rich tunability of surface chemistry and porous structures, paper offers many exciting opportunities for wearable electronics. In this review, we first introduce the intriguing properties of paper-based wearable electronics and strategies for cellulose modifications to satisfy specific demands. We then overview the applications of paper-based devices in biosensing, energy storage and generation, optoelectronics, soft actuators, and several others. Finally, we discuss some challenges that need to be addressed before practical uses and wide implementation of paper-based wearable electronics.
皮肤接口可穿戴电子设备在医疗保健、人机接口、机器人技术等领域有着广泛的应用。最先进的可穿戴电子设备通常存在制造工艺成本高且复杂以及聚合物基板不可生物降解的问题。由纠缠的微米或纳米级纤维素纤维组成的纸张与可扩展制造技术兼容,并成为用于可穿戴电子设备的可持续、廉价、一次性且生物相容的基板。鉴于纸张具有各种吸引人的特性(如透气性、柔韧性、生物相容性和生物降解性)以及表面化学和多孔结构的丰富可调性,它为可穿戴电子设备提供了许多令人兴奋的机会。在本综述中,我们首先介绍基于纸张的可穿戴电子设备的有趣特性以及满足特定需求的纤维素改性策略。然后,我们概述了基于纸张的设备在生物传感、能量存储与产生、光电子学、软致动器等方面的应用。最后,我们讨论了在基于纸张的可穿戴电子设备实际使用和广泛应用之前需要解决的一些挑战。