Suppr超能文献

前段分析系统检测到的晶状体位置对白内障手术术后屈光的影响。

Influence of lens position as detected by an anterior segment analysis system on postoperative refraction in cataract surgery.

作者信息

Zhang Jia-Ju, Li Jian-Qing, Li Chen, Cao Yi-Hong, Lu Pei-Rong

机构信息

Department of Ophthalmology, the First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu Province, China.

出版信息

Int J Ophthalmol. 2021 Jul 18;14(7):1006-1012. doi: 10.18240/ijo.2021.07.07. eCollection 2021.

Abstract

AIM

To predict postoperative intraocular lens (IOL) position using the Sirius anterior segment analysis system and investigate the effect of lens position and IOL type on postoperative refraction.

METHODS

A total of 97 patients (102 eyes) were enrolled in the final analysis. An anterior segment biometry measurement was performed preoperatively with Sirius and Lenstar. The results of predicted lens position (PLP) and IOL power were automatically calculated by the software used by the instruments. Effective lens position (ELP) was measured manually using Sirius 3mo postoperatively. Pearson's correlation analysis and linear regression analysis were used to determine the correlation of lens position to other parameters.

RESULTS

PLP and ELP were positively correlated to axial length (AL; =0.42, <0.0001 and =0.49, <0.0001, respectively). There was a weak correlation between the peLP (ELP-PLP) and the prediction error of spherical refraction (peSR; =0.34, <0.0001). The peLP of Softec HD IOL differed statistically from those of both the TECNIS ZCB00 and Sensor AR40E IOLs. Multiple linear regression was used to obtain the prediction formula: ELP=0.66+0.63×[aqueous depth (AQD)+0.6LT] (=0.61, <0.0001), and a new variable (AQD+0.6 LT) was found to have the strongest correlation with ELP.

CONCLUSION

The Sirius anterior segment analysis system is helpful to predict ELP, which reduces postoperative refraction error.

摘要

目的

使用Sirius眼前节分析系统预测人工晶状体(IOL)术后位置,并研究晶状体位置和IOL类型对术后屈光的影响。

方法

共有97例患者(102只眼)纳入最终分析。术前使用Sirius和Lenstar进行眼前节生物测量。仪器使用的软件自动计算预测晶状体位置(PLP)和IOL屈光度的结果。术后3个月使用Sirius手动测量有效晶状体位置(ELP)。采用Pearson相关分析和线性回归分析确定晶状体位置与其他参数之间的相关性。

结果

PLP和ELP与眼轴长度(AL)呈正相关(分别为r = 0.42,P < 0.0001和r = 0.49,P < 0.0001)。预测有效晶状体位置(peLP,ELP - PLP)与球镜屈光预测误差(peSR)之间存在弱相关性(r = 0.34,P < 0.0001)。Softec HD IOL的peLP与TECNIS ZCB00和Sensor AR40E IOL的peLP在统计学上存在差异。采用多元线性回归获得预测公式:ELP = 0.66 + 0.63×[前房深度(AQD)+0.6×晶状体厚度(LT)](r = 0.61, P <0.0001),并且发现一个新变量(AQD + 0.6 LT)与ELP相关性最强

结论

Sirius眼前节分析系统有助于预测ELP,减少术后屈光误差

相似文献

1
Influence of lens position as detected by an anterior segment analysis system on postoperative refraction in cataract surgery.
Int J Ophthalmol. 2021 Jul 18;14(7):1006-1012. doi: 10.18240/ijo.2021.07.07. eCollection 2021.
3
Predicting the postoperative intraocular lens position based on IOL Master 700 biometry, compared with results from the anterior segment analysis system.
Graefes Arch Clin Exp Ophthalmol. 2024 Jan;262(1):113-119. doi: 10.1007/s00417-023-06175-1. Epub 2023 Jul 21.
4
Accuracy of optimized Sirius ray-tracing method in intraocular lens power calculation.
Int J Ophthalmol. 2022 Feb 18;15(2):228-232. doi: 10.18240/ijo.2022.02.06. eCollection 2022.
6
Modified Haigis Formula Effective Lens Position Equation for Ciliary Sulcus-Implanted Intraocular Lenses.
Am J Ophthalmol. 2016 Jan;161:142-49.e1-2. doi: 10.1016/j.ajo.2015.09.040. Epub 2015 Oct 9.
8
Could anatomical changes occurring with cataract surgery have a clinically significant effect on effective intraocular lens position?
Int Ophthalmol. 2021 May;41(5):1895-1907. doi: 10.1007/s10792-021-01751-y. Epub 2021 Feb 18.

引用本文的文献

1
Effect of factors on the space between the posterior capsule and IOL.
BMC Ophthalmol. 2025 Feb 28;25(1):101. doi: 10.1186/s12886-025-03917-z.
2
Risk factors for biometry prediction error by Barrett Universal II intraocular lens formula in Chinese patients.
Int J Ophthalmol. 2025 Jan 18;18(1):74-78. doi: 10.18240/ijo.2025.01.08. eCollection 2025.
3
Prediction of IOL decentration, tilt and axial position using anterior segment OCT data.
Graefes Arch Clin Exp Ophthalmol. 2024 Mar;262(3):835-846. doi: 10.1007/s00417-023-06208-9. Epub 2023 Sep 1.
4
Predicting the postoperative intraocular lens position based on IOL Master 700 biometry, compared with results from the anterior segment analysis system.
Graefes Arch Clin Exp Ophthalmol. 2024 Jan;262(1):113-119. doi: 10.1007/s00417-023-06175-1. Epub 2023 Jul 21.

本文引用的文献

3
Comparison of two biometers: A swept-source optical coherence tomography and an optical low-coherence reflectometry biometer.
Eur J Ophthalmol. 2019 Sep;29(5):547-554. doi: 10.1177/1120672118802918. Epub 2018 Oct 7.
4
The role of the vitreous body in effective IOL positioning.
Graefes Arch Clin Exp Ophthalmol. 2018 Aug;256(8):1517-1520. doi: 10.1007/s00417-018-3994-9. Epub 2018 Apr 26.
5
True rotational stability of a single-piece hydrophobic intraocular lens.
Br J Ophthalmol. 2019 Feb;103(2):186-190. doi: 10.1136/bjophthalmol-2017-311797. Epub 2018 Apr 17.
6
IOL Power Calculation in Short and Long Eyes.
Asia Pac J Ophthalmol (Phila). 2017 Jul-Aug;6(4):330-331. doi: 10.22608/APO.2017338.
7
Prediction of the true IOL position.
Br J Ophthalmol. 2017 Oct;101(10):1440-1446. doi: 10.1136/bjophthalmol-2016-309543. Epub 2017 Feb 22.
8
Prediction of Postoperative Intraocular Lens Position with Angle-to-Angle Depth Using Anterior Segment Optical Coherence Tomography.
Ophthalmology. 2016 Dec;123(12):2474-2480. doi: 10.1016/j.ophtha.2016.09.005. Epub 2016 Oct 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验