Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan.
Bioinformatics Center, Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan.
Nucleic Acids Res. 2021 Oct 11;49(18):e104. doi: 10.1093/nar/gkab601.
Single-cell RNA-seq (scRNA-seq) can be used to characterize cellular heterogeneity in thousands of cells. The reconstruction of a gene network based on coexpression patterns is a fundamental task in scRNA-seq analyses, and the mutual exclusivity of gene expression can be critical for understanding such heterogeneity. Here, we propose an approach for detecting communities from a genetic network constructed on the basis of coexpression properties. The community-based comparison of multiple coexpression networks enables the identification of functionally related gene clusters that cannot be fully captured through differential gene expression-based analysis. We also developed a novel metric referred to as the exclusively expressed index (EEI) that identifies mutually exclusive gene pairs from sparse scRNA-seq data. EEI quantifies and ranks the exclusive expression levels of all gene pairs from binary expression patterns while maintaining robustness against a low sequencing depth. We applied our methods to glioblastoma scRNA-seq data and found that gene communities were partially conserved after serum stimulation despite a considerable number of differentially expressed genes. We also demonstrate that the identification of mutually exclusive gene sets with EEI can improve the sensitivity of capturing cellular heterogeneity. Our methods complement existing approaches and provide new biological insights, even for a large, sparse dataset, in the single-cell analysis field.
单细胞 RNA 测序 (scRNA-seq) 可用于在数千个细胞中描述细胞异质性。基于共表达模式构建基因网络的重构是 scRNA-seq 分析中的基本任务,而基因表达的互斥性对于理解这种异质性至关重要。在这里,我们提出了一种基于共表达特性构建的基因网络上检测社区的方法。多个共表达网络的基于社区的比较能够识别功能相关的基因簇,这些基因簇无法通过基于差异基因表达的分析完全捕获。我们还开发了一种新的度量标准,称为独特表达指数 (EEI),它可以从稀疏的 scRNA-seq 数据中识别互斥的基因对。EEI 从二值表达模式中量化和排列所有基因对的独特表达水平,同时保持对低测序深度的稳健性。我们将我们的方法应用于胶质母细胞瘤 scRNA-seq 数据,发现尽管存在大量差异表达基因,但血清刺激后基因社区仍然部分保守。我们还证明,使用 EEI 识别互斥基因集可以提高捕获细胞异质性的灵敏度。我们的方法补充了现有方法,即使在大型稀疏数据集的单细胞分析领域,也提供了新的生物学见解。