Suppr超能文献

美国新冠疫情长期流行动态建模

Modeling of the Long-Term Epidemic Dynamics of COVID-19 in the United States.

作者信息

Huang Derek, Tao Huanyu, Wu Qilong, Huang Sheng-You, Xiao Yi

机构信息

Wuhan Britain-China School, No.10 Gutian Rd., Qiaokou District, Wuhan 430022, China.

Institute of Biophysics, School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China.

出版信息

Int J Environ Res Public Health. 2021 Jul 16;18(14):7594. doi: 10.3390/ijerph18147594.

Abstract

Coronavirus 2019 (COVID-19) is causing a severe pandemic that has resulted in millions of confirmed cases and deaths around the world. In the absence of effective drugs for treatment, non-pharmaceutical interventions are the most effective approaches to control the disease. Although some countries have the pandemic under control, all countries around the world, including the United States (US), are still in the process of controlling COVID-19, which calls for an effective epidemic model to describe the transmission dynamics of COVID-19. Meeting this need, we have extensively investigated the transmission dynamics of COVID-19 from 22 January 2020 to 14 February 2021 for the 50 states of the United States, which revealed the general principles underlying the spread of the virus in terms of intervention measures and demographic properties. We further proposed a time-dependent epidemic model, named T-SIR, to model the long-term transmission dynamics of COVID-19 in the US. It was shown in this paper that our T-SIR model could effectively model the epidemic dynamics of COVID-19 for all 50 states, which provided insights into the transmission dynamics of COVID-19 in the US. The present study will be valuable to help understand the epidemic dynamics of COVID-19 and thus help governments determine and implement effective intervention measures or vaccine prioritization to control the pandemic.

摘要

2019冠状病毒病(COVID-19)正在引发一场严重的大流行,已在全球导致数百万确诊病例和死亡。在缺乏有效治疗药物的情况下,非药物干预是控制该疾病最有效的方法。尽管一些国家已控制住大流行,但包括美国在内的世界各国仍在控制COVID-19的过程中,这就需要一个有效的流行病模型来描述COVID-19的传播动态。为满足这一需求,我们对2020年1月22日至2021年2月14日期间美国50个州的COVID-19传播动态进行了广泛研究,揭示了病毒传播在干预措施和人口特征方面的一般原则。我们进一步提出了一个名为T-SIR的时间依赖性流行病模型,以模拟COVID-19在美国的长期传播动态。本文表明,我们的T-SIR模型可以有效地模拟美国所有50个州的COVID-19疫情动态,这为了解COVID-19在美国的传播动态提供了见解。本研究对于帮助理解COVID-19的疫情动态、从而帮助政府确定和实施有效的干预措施或疫苗接种优先级以控制大流行具有重要价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/68f3/8305610/97c28d7c535a/ijerph-18-07594-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验