Boogaerts Tim, Jacobs Lotte, De Roeck Naomi, Van den Bogaert Siel, Aertgeerts Bert, Lahousse Lies, van Nuijs Alexander L N, Delputte Peter
Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium.
Laboratory for Microbiology, Parasitology and Hygiene, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium.
Sci Total Environ. 2021 Oct 1;789:148043. doi: 10.1016/j.scitotenv.2021.148043. Epub 2021 May 26.
Wastewater-based epidemiology of SARS-CoV-2 could play a role in monitoring the spread of the virus in the population and controlling possible outbreaks. However, sensitive sample preparation and detection methods are necessary to detect trace levels of SARS-CoV-2 RNA in influent wastewater (IWW). Unlike predecessors, method optimization of a SARS-CoV-2 RNA concentration and detection procedure was performed with IWW samples with high viral SARS-CoV-2 RNA loads. This is of importance since the SARS-CoV-2 genome in IWW might have already been subject to in-sewer degradation into smaller genome fragments or might be present in a different form (e.g. cell debris, …). Centricon Plus-70 (100 kDa) centrifugal filter devices resulted in the lowest and most reproducible Ct-values for SARS-CoV-2 RNA. Lowering the molecular weight cut-off did not improve our limit of detection and quantification (approximately 10 copies/μL for all genes). Quantitative polymerase chain reaction (qPCR) was employed for the amplification of the N1, N2, N3 and E-gene fragments. This is one of the first studies to apply digital polymerase chain reaction (dPCR) for the detection of SARS-CoV-2 RNA in IWW. dPCR showed high variability at low concentration levels (10 copies/μL), indicating that variability in bioanalytical methods for wastewater-based epidemiology of SARS-CoV-2 might be substantial. dPCR results in IWW were in line with the results found with qPCR. On average, the N2-gene fragment showed high in-sample stability in IWW for 10 days of storage at 4 °C. Between-sample variability was substantial due to the low native concentrations in IWW. Additionally, the E-gene fragment proved to be less stable compared to the N2-gene fragment and showed higher variability. Freezing the IWW samples resulted in a 10-fold decay of loads of the N2- and E-gene fragment in IWW.
基于污水的新型冠状病毒2019(SARS-CoV-2)流行病学调查有助于监测病毒在人群中的传播情况,并控制可能出现的疫情。然而,为了检测流入污水(IWW)中痕量的SARS-CoV-2核糖核酸(RNA),需要采用灵敏的样本制备及检测方法。与以往研究不同,本研究使用高病毒载量的IWW样本对SARS-CoV-2 RNA浓缩及检测流程进行方法优化。这一点很重要,因为IWW中的SARS-CoV-2基因组可能已经在下水道中降解为较小的基因组片段,或者以不同的形式存在(如细胞碎片等)。使用Centricon Plus-70(100 kDa)离心过滤装置检测SARS-CoV-2 RNA时,Ct值最低且最具重复性。降低分子量截留值并不能提高检测和定量限(所有基因约为10拷贝/μL)。采用定量聚合酶链反应(qPCR)扩增N1、N2、N3和E基因片段。本研究首次采用数字聚合酶链反应(dPCR)检测IWW中的SARS-CoV-2 RNA。dPCR在低浓度水平(10拷贝/μL)时显示出较高的变异性,表明基于污水的SARS-CoV-2流行病学研究中生物分析方法的变异性可能很大。IWW的dPCR结果与qPCR结果一致。平均而言,N2基因片段在4℃保存10天的IWW样本中显示出较高的稳定性。由于IWW中天然浓度较低,样本间的变异性很大。此外,与N2基因片段相比,E基因片段稳定性较差,变异性更高。冷冻IWW样本导致IWW中N2和E基因片段的载量衰减10倍。