Suppr超能文献

使用基于机器学习的分类器对不同淀粉样蛋白配体的 PET 成像特征进行协调。

Harmonisation of PET imaging features with different amyloid ligands using machine learning-based classifier.

机构信息

Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, 06351, Seoul, South Korea.

Neuroscience Center, Samsung Medical Center, Seoul, 06351, South Korea.

出版信息

Eur J Nucl Med Mol Imaging. 2021 Dec;49(1):321-330. doi: 10.1007/s00259-021-05499-6. Epub 2021 Jul 30.

Abstract

PURPOSE

In this study, we used machine learning to develop a new method derived from a ligand-independent amyloid (Aβ) positron emission tomography (PET) classifier to harmonise different Aβ ligands.

METHODS

We obtained 107 paired F-florbetaben (FBB) and F-flutemetamol (FMM) PET images at the Samsung Medical Centre. To apply the method to FMM ligand, we transferred the previously developed FBB PET classifier to test similar features from the FMM PET images for application to FMM, which in turn developed a ligand-independent Aβ PET classifier. We explored the concordance rates of our classifier in detecting cortical and striatal Aβ positivity. We investigated the correlation of machine learning-based cortical tracer uptake (ML-CTU) values quantified by the classifier between FBB and FMM.

RESULTS

This classifier achieved high classification accuracy (area under the curve = 0.958) even with different Aβ PET ligands. In addition, the concordance rate of FBB and FMM using the classifier (87.5%) was good to excellent, which seemed to be higher than that in visual assessment (82.7%) and lower than that in standardised uptake value ratio cut-off categorisation (93.3%). FBB and FMM ML-CTU values were highly correlated with each other (R = 0.903).

CONCLUSION

Our findings suggested that our novel classifier may harmonise FBB and FMM ligands in the clinical setting which in turn facilitate the biomarker-guided diagnosis and trials of anti-Aβ treatment in the research field.

摘要

目的

本研究利用机器学习开发了一种新的方法,该方法源自配体独立的淀粉样蛋白(Aβ)正电子发射断层扫描(PET)分类器,以协调不同的 Aβ 配体。

方法

我们在三星医疗中心获得了 107 对 F-氟比他滨(FBB)和 F-氟美他滨(FMM)PET 图像。为了将该方法应用于 FMM 配体,我们将之前开发的 FBB PET 分类器转移到 FMM PET 图像中以测试相似的特征,以便将其应用于 FMM,并开发了一种配体独立的 Aβ PET 分类器。我们探讨了我们的分类器在检测皮质和纹状体 Aβ 阳性方面的一致性率。我们研究了分类器量化的基于机器学习的皮质示踪剂摄取(ML-CTU)值与 FBB 和 FMM 之间的相关性。

结果

即使使用不同的 Aβ PET 配体,该分类器也实现了很高的分类准确性(曲线下面积=0.958)。此外,使用分类器的 FBB 和 FMM 的一致性率(87.5%)良好至优秀,这似乎高于视觉评估(82.7%),低于标准化摄取比值截断分类(93.3%)。FBB 和 FMM ML-CTU 值彼此高度相关(R=0.903)。

结论

我们的研究结果表明,我们的新型分类器可能在临床环境中协调 FBB 和 FMM 配体,从而促进研究领域中基于生物标志物的抗 Aβ 治疗的诊断和试验。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验