Suppr超能文献

利用卷积神经网络自动识别疟疾和其他红细胞内含物。

Automatic identification of malaria and other red blood cell inclusions using convolutional neural networks.

机构信息

Biochemistry and Molecular Genetics Department, Biomedical Diagnostic Center, Hospital Clinic of Barcelona, Barcelona, Catalonia, Spain.

Department of Mathematics, Barcelona East Engineering School, Technical University of Catalonia, Barcelona, Catalonia, Spain.

出版信息

Comput Biol Med. 2021 Sep;136:104680. doi: 10.1016/j.compbiomed.2021.104680. Epub 2021 Jul 22.

Abstract

Malaria is a serious disease responsible for thousands of deaths each year. Many efforts have been made to aid in the diagnosis of malaria using machine learning techniques, but to date, the presence of other elements that may interfere with the recognition of malaria has not been considered. We have developed the first deep learning model using convolutional neural networks capable of differentiating malaria-infected red blood cells from not only normal erythrocytes but also erythrocytes with other types of inclusions. 6415 images of red blood cells were segmented from digital images of 53 peripheral blood smears using thresholding and watershed transformation techniques. These images were used to train a VGG-16 architecture using transfer learning. Using an independent test set of 23 smears, this model was 99.5% accurate in classifying malaria parasites and other red blood cell inclusions. This model also exhibited sensitivity and specificity values of 100% and 91.7%, respectively, classifying a complete smear as infected or not infected. Our model represents a promising advance for automation in the identification of malaria-infected patients. The differentiation between malaria parasites and other red blood cell inclusions demonstrates the potential utility of our model in a real work environment.

摘要

疟疾是一种严重的疾病,每年导致数千人死亡。为了使用机器学习技术辅助疟疾诊断,已经做出了许多努力,但迄今为止,尚未考虑可能干扰疟疾识别的其他因素的存在。我们开发了第一个使用卷积神经网络的深度学习模型,该模型不仅能够区分感染疟疾的红细胞,还能够区分具有其他类型内含物的正常红细胞。使用阈值和分水岭变换技术,从 53 张外周血涂片的数字图像中分割了 6415 张红细胞图像。这些图像用于使用迁移学习训练 VGG-16 架构。使用 23 张独立测试涂片,该模型在分类疟原虫和其他红细胞内含物方面的准确率达到了 99.5%。该模型在分类完整涂片是否感染方面的灵敏度和特异性值分别为 100%和 91.7%。我们的模型代表了在识别感染疟疾病人的自动化方面的一项有前途的进展。疟原虫和其他红细胞内含物的区分证明了我们的模型在实际工作环境中的潜在效用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验