Suppr超能文献

MT-clinical BERT:基于多任务学习的临床信息提取扩展。

MT-clinical BERT: scaling clinical information extraction with multitask learning.

机构信息

Computer Science Department, Virginia Commonwealth University, Richmond, Virginia, USA.

Information Sciences and Technology, George Mason University, Fairfax, Virginia, USA.

出版信息

J Am Med Inform Assoc. 2021 Sep 18;28(10):2108-2115. doi: 10.1093/jamia/ocab126.

Abstract

OBJECTIVE

Clinical notes contain an abundance of important, but not-readily accessible, information about patients. Systems that automatically extract this information rely on large amounts of training data of which there exists limited resources to create. Furthermore, they are developed disjointly, meaning that no information can be shared among task-specific systems. This bottleneck unnecessarily complicates practical application, reduces the performance capabilities of each individual solution, and associates the engineering debt of managing multiple information extraction systems.

MATERIALS AND METHODS

We address these challenges by developing Multitask-Clinical BERT: a single deep learning model that simultaneously performs 8 clinical tasks spanning entity extraction, personal health information identification, language entailment, and similarity by sharing representations among tasks.

RESULTS

We compare the performance of our multitasking information extraction system to state-of-the-art BERT sequential fine-tuning baselines. We observe a slight but consistent performance degradation in MT-Clinical BERT relative to sequential fine-tuning.

DISCUSSION

These results intuitively suggest that learning a general clinical text representation capable of supporting multiple tasks has the downside of losing the ability to exploit dataset or clinical note-specific properties when compared to a single, task-specific model.

CONCLUSIONS

We find our single system performs competitively with all state-the-art task-specific systems while also benefiting from massive computational benefits at inference.

摘要

目的

临床记录中包含大量关于患者的重要但不易获取的信息。自动提取这些信息的系统依赖于大量的训练数据,但创建这些数据的资源有限。此外,它们是独立开发的,这意味着特定于任务的系统之间无法共享信息。这种瓶颈不必要地增加了实际应用的复杂性,降低了每个单独解决方案的性能能力,并带来了管理多个信息提取系统的工程债务。

材料和方法

我们通过开发 Multitask-Clinical BERT 来解决这些挑战:这是一个单一的深度学习模型,通过在任务之间共享表示,同时执行 8 个跨越实体提取、个人健康信息识别、语言蕴涵和相似性的临床任务。

结果

我们将我们的多任务信息提取系统的性能与最先进的 BERT 顺序微调基准进行了比较。我们观察到 MT-Clinical BERT 的性能相对于顺序微调略有但一致的下降。

讨论

这些结果直观地表明,与单个特定于任务的模型相比,学习能够支持多个任务的通用临床文本表示具有失去利用数据集或临床记录特定属性的能力的缺点。

结论

我们发现我们的单个系统与所有最先进的特定于任务的系统竞争,同时在推理时也受益于大规模的计算优势。

相似文献

引用本文的文献

7
Symptom-BERT: Enhancing Cancer Symptom Detection in EHR Clinical Notes.症状-BERT:增强电子健康记录临床记录中的癌症症状检测
J Pain Symptom Manage. 2024 Aug;68(2):190-198.e1. doi: 10.1016/j.jpainsymman.2024.05.015. Epub 2024 May 23.

本文引用的文献

1
Family history information extraction via deep joint learning.通过深度联合学习提取家族史信息。
BMC Med Inform Decis Mak. 2019 Dec 27;19(Suppl 10):277. doi: 10.1186/s12911-019-0995-5.
9
Evaluating temporal relations in clinical text: 2012 i2b2 Challenge.评估临床文本中的时间关系:2012 i2b2 挑战赛。
J Am Med Inform Assoc. 2013 Sep-Oct;20(5):806-13. doi: 10.1136/amiajnl-2013-001628. Epub 2013 Apr 5.
10
2010 i2b2/VA challenge on concepts, assertions, and relations in clinical text.2010 i2b2/VA 挑战赛:临床文本中的概念、断言和关系
J Am Med Inform Assoc. 2011 Sep-Oct;18(5):552-6. doi: 10.1136/amiajnl-2011-000203. Epub 2011 Jun 16.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验