Williams Kyle A, Podgorsak Alexander R, Bhurwani Mohammad Mahdi Shiraz, Rava Ryan A, Sommer Kelsey N, Ionita Ciprian N
Department of Biomedical Engineering, University at Buffalo, Buffalo, NY 14228.
Canon Stroke and Vascular Research Center, Buffalo, NY 14208.
Proc SPIE Int Soc Opt Eng. 2021 Feb;11601. doi: 10.1117/12.2581003. Epub 2021 Feb 15.
In recent years, endovascular treatment has become the dominant approach to treat intracranial aneurysms (IAs). Despite tremendous improvement in surgical devices and techniques, 10-30% of these surgeries require retreatment. Previously, we developed a method which combines quantitative angiography with data-driven modeling to predict aneurysm occlusion within a fraction of a second. This is the first report on a semi-autonomous system, which can predict the surgical outcome of an IA immediately following device placement, allowing for therapy adjustment. Additionally, we previously reported various algorithms which can segment IAs, extract hemodynamic parameters via angiographic parametric imaging, and perform occlusion predictions.
We integrated these features into an Aneurysm Occlusion Assistant (AnOA) utilizing the Kivy library's graphical instructions and unique language properties for interface development, while the machine learning algorithms were entirely developed within Keras, Tensorflow and skLearn. The interface requires pre- and post-device placement angiographic data. The next steps for aneurysm segmentation, angiographic analysis and prediction have been integrated allowing either autonomous or interactive use.
The interface allows for segmentation of IAs and cranial vasculature with a dice index of ~0.78 and prediction of aneurysm occlusion at six months with an accuracy 0.84, in 6.88 seconds.
This is the first report on the AnOA to guide endovascular treatment of IAs. While this initial report is on a stand-alone platform, the software can be integrated in the angiographic suite allowing direct communication with the angiographic system for a completely autonomous surgical guidance solution.
近年来,血管内治疗已成为治疗颅内动脉瘤(IA)的主要方法。尽管手术设备和技术有了巨大改进,但这些手术中有10%-30%需要再次治疗。此前,我们开发了一种将定量血管造影与数据驱动建模相结合的方法,可在几分之一秒内预测动脉瘤闭塞情况。这是关于一个半自主系统的首次报告,该系统能够在放置设备后立即预测IA的手术结果,以便进行治疗调整。此外,我们之前还报告了各种算法,这些算法可以分割IA、通过血管造影参数成像提取血流动力学参数并进行闭塞预测。
我们利用Kivy库的图形指令和独特语言属性将这些功能集成到动脉瘤闭塞辅助工具(AnOA)中以进行界面开发,而机器学习算法则完全在Keras、TensorFlow和skLearn中开发。该界面需要放置设备前后的血管造影数据。动脉瘤分割、血管造影分析和预测的后续步骤已集成,允许自主或交互式使用。
该界面能够分割IA和颅脑血管,骰子系数约为0.78,并能在6.88秒内以0.84的准确率预测六个月后的动脉瘤闭塞情况。
这是关于AnOA指导IA血管内治疗的首次报告。虽然这份初步报告是基于一个独立平台,但该软件可集成到血管造影套件中,以便与血管造影系统直接通信,从而提供完全自主的手术指导解决方案。