Suppr超能文献

人工智能在未破裂颅内动脉瘤中的作用:综述

Role of Artificial Intelligence in Unruptured Intracranial Aneurysm: An Overview.

作者信息

Marasini Anurag, Shrestha Alisha, Phuyal Subash, Zaidat Osama O, Kalia Junaid Siddiq

机构信息

AINeuroCare Academy, Dallas, TX, United States.

Travel and Mountain Medicine Center, Kathmandu, Nepal.

出版信息

Front Neurol. 2022 Feb 23;13:784326. doi: 10.3389/fneur.2022.784326. eCollection 2022.

Abstract

Intracranial aneurysms (IAs) are a significant public health concern. In populations without comorbidity and a mean age of 50 years, their prevalence is up to 3.2%. An efficient method for identifying subjects at high risk of an IA is warranted to provide adequate radiological screening guidelines and effectively allocate medical resources. Artificial intelligence (AI) has received worldwide attention for its impressive performance in image-based tasks. It can serve as an adjunct to physicians in clinical settings, improving diagnostic accuracy while reducing physicians' workload. AI can perform tasks such as pattern recognition, object identification, and problem resolution with human-like intelligence. Based on the data collected for training, AI can assist in decisions in a semi-autonomous manner. Similarly, AI can identify a likely diagnosis and also, select a suitable treatment based on health records or imaging data without any explicit programming (instruction set). Aneurysm rupture prediction is the holy grail of prediction modeling. AI can significantly improve rupture prediction, saving lives and limbs in the process. Nowadays, deep learning (DL) has shown significant potential in accurately detecting lesions on medical imaging and has reached, or perhaps surpassed, an expert-level of diagnosis. This is the first step to accurately diagnose UIAs with increased computational radiomicis. This will not only allow diagnosis but also suggest a treatment course. In the future, we will see an increasing role of AI in both the diagnosis and management of IAs.

摘要

颅内动脉瘤(IAs)是一个重大的公共卫生问题。在无合并症且平均年龄为50岁的人群中,其患病率高达3.2%。因此,需要一种有效的方法来识别颅内动脉瘤高风险患者,以提供适当的放射学筛查指南并有效分配医疗资源。人工智能(AI)因其在基于图像的任务中令人印象深刻的表现而受到全球关注。它可以在临床环境中作为医生的辅助工具,提高诊断准确性,同时减轻医生的工作量。人工智能可以执行模式识别、目标识别和问题解决等任务,具备类似人类的智能。基于收集用于训练的数据,人工智能可以以半自主的方式协助做出决策。同样,人工智能可以在没有任何明确编程(指令集)的情况下,根据健康记录或成像数据识别可能的诊断,并选择合适的治疗方法。动脉瘤破裂预测是预测建模的圣杯。人工智能可以显著改善破裂预测,在此过程中挽救生命和肢体。如今,深度学习(DL)在医学影像上准确检测病变方面已显示出巨大潜力,并且已经达到或可能超过了专家级诊断水平。这是通过增加计算放射组学来准确诊断未破裂颅内动脉瘤的第一步。这不仅可以实现诊断,还可以建议治疗方案。未来,我们将看到人工智能在颅内动脉瘤的诊断和管理中发挥越来越重要的作用。

相似文献

1
Role of Artificial Intelligence in Unruptured Intracranial Aneurysm: An Overview.
Front Neurol. 2022 Feb 23;13:784326. doi: 10.3389/fneur.2022.784326. eCollection 2022.
2
Artificial Intelligence in the Management of Intracranial Aneurysms: Current Status and Future Perspectives.
AJNR Am J Neuroradiol. 2020 Mar;41(3):373-379. doi: 10.3174/ajnr.A6468. Epub 2020 Mar 12.
5
Artificial Intelligence Applications in Intracranial Aneurysm: Achievements, Challenges and Opportunities.
Acad Radiol. 2022 Mar;29 Suppl 3:S201-S214. doi: 10.1016/j.acra.2021.06.013. Epub 2021 Aug 8.
7
Artificial intelligence in medical imaging of the liver.
World J Gastroenterol. 2019 Feb 14;25(6):672-682. doi: 10.3748/wjg.v25.i6.672.
9
Quantitative proteomics analysis of differentially expressed proteins in ruptured and unruptured cerebral aneurysms by iTRAQ.
J Proteomics. 2018 Jun 30;182:45-52. doi: 10.1016/j.jprot.2018.05.001. Epub 2018 May 3.
10
Artificial intelligence in thyroid ultrasound.
Front Oncol. 2023 May 12;13:1060702. doi: 10.3389/fonc.2023.1060702. eCollection 2023.

引用本文的文献

1
Risk factors and predictive indicators of rupture in cerebral aneurysms.
Front Physiol. 2024 Sep 5;15:1454016. doi: 10.3389/fphys.2024.1454016. eCollection 2024.
3
Malpractice Litigation Related to Diagnosis and Treatment of Intracranial Aneurysms.
AJNR Am J Neuroradiol. 2023 Apr;44(4):460-466. doi: 10.3174/ajnr.A7828. Epub 2023 Mar 30.

本文引用的文献

1
The Aneurysm Occlusion Assistant, an AI platform for real time surgical guidance of intracranial aneurysms.
Proc SPIE Int Soc Opt Eng. 2021 Feb;11601. doi: 10.1117/12.2581003. Epub 2021 Feb 15.
2
AI system outperforms humans in designing floorplans for microchips.
Nature. 2021 Jun;594(7862):183-185. doi: 10.1038/d41586-021-01515-9.
4
Predictive score for complete occlusion of intracranial aneurysms treated by flow-diverter stents using machine learning.
J Neurointerv Surg. 2021 Apr;13(4):341-346. doi: 10.1136/neurintsurg-2020-016748. Epub 2020 Nov 20.
5
Deep Learning for Detecting Cerebral Aneurysms with CT Angiography.
Radiology. 2021 Jan;298(1):155-163. doi: 10.1148/radiol.2020192154. Epub 2020 Nov 3.
7
Management of incidental unruptured intracranial aneurysms.
Pract Neurol. 2020 Oct;20(5):347-355. doi: 10.1136/practneurol-2020-002521. Epub 2020 Sep 6.
8
Stability Assessment of Intracranial Aneurysms Using Machine Learning Based on Clinical and Morphological Features.
Transl Stroke Res. 2020 Dec;11(6):1287-1295. doi: 10.1007/s12975-020-00811-2. Epub 2020 May 19.
10
Prediction of Intracranial Aneurysm Risk using Machine Learning.
Sci Rep. 2020 Apr 24;10(1):6921. doi: 10.1038/s41598-020-63906-8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验