Marzouk Mohamed, Elshaboury Nehal, Abdel-Latif Amr, Azab Shimaa
Structural Engineering Department, Faculty of Engineering, Cairo University, Egypt.
Construction and Project Management Research Institute, Housing and Building National Research Center, Giza, Egypt.
Process Saf Environ Prot. 2021 Sep;153:363-375. doi: 10.1016/j.psep.2021.07.034. Epub 2021 Jul 24.
The World Health Organization has declared COVID-19 as a global pandemic in early 2020. A comprehensive understanding of the epidemiological characteristics of this virus is crucial to limit its spreading. Therefore, this research applies artificial intelligence-based models to predict the prevalence of the COVID-19 outbreak in Egypt. These models are long short-term memory network (LSTM), convolutional neural network, and multilayer perceptron neural network. They are trained and validated using the dataset records from 14 February 2020 to 15 August 2020. The results of the models are evaluated using the determination coefficient and root mean square error. The LSTM model exhibits the best performance in forecasting the cumulative infections for one week and one month ahead. Finally, the LSTM model with the optimal parameter values is applied to forecast the spread of this epidemic for one month ahead using the data from 14 February 2020 to 30 June 2021. The total size of infections, recoveries, and deaths is estimated to be 285,939, 234,747, and 17,251 cases on 31 July 2021. This study could assist the decision-makers in developing and monitoring policies to confront this disease.
世界卫生组织于2020年初宣布新冠病毒病(COVID-19)为全球大流行病。全面了解这种病毒的流行病学特征对于限制其传播至关重要。因此,本研究应用基于人工智能的模型来预测埃及新冠病毒病疫情的流行情况。这些模型包括长短期记忆网络(LSTM)、卷积神经网络和多层感知器神经网络。使用2020年2月14日至2020年8月15日的数据集记录对它们进行训练和验证。使用决定系数和均方根误差对模型结果进行评估。LSTM模型在预测未来一周和一个月的累计感染方面表现最佳。最后,使用2020年2月14日至2021年6月30日的数据,将具有最佳参数值的LSTM模型应用于预测未来一个月这种流行病的传播情况。预计到2021年7月31日,感染、康复和死亡的总病例数分别为285,939例、234,747例和17,251例。本研究可为决策者制定和监测应对这种疾病的政策提供帮助。