Suppr超能文献

用于分析和检测新型冠状病毒肺炎的机器学习与深度学习方法:综述

Machine Learning and Deep Learning Approaches to Analyze and Detect COVID-19: A Review.

作者信息

Aishwarya T, Ravi Kumar V

机构信息

Vidyavardhaka College of Engineering, Mysuru, Karnataka India.

出版信息

SN Comput Sci. 2021;2(3):226. doi: 10.1007/s42979-021-00605-9. Epub 2021 Apr 20.

Abstract

COVID-19 also referred to as Corona Virus disease is a communicable disease that is caused by a coronavirus. Significant number of people who are tainted with this infection will have to brave and encounter moderate to severe respiratory sickness. Aged persons, sick, convalescing people and all those having underlying health complications like diabetes, chronic breathing diseases and cardiovascular diseases are bound to contract this sickness if not taken proper care of. At the current scenario, there are neither definite treatments nor inoculations against COVID-19. Nevertheless, there are numerous continuing clinical trials assessing the impending treatments and vaccines. Sensing the threatening impacts of Covid-19, researchers of computer science have started using various techniques and approaches of Machine Learning and Deep Learning to detect the presence of the disease using X-rays and CT images. The biggest stumbling block here is that there are only a few datasets available. There is also less number of experts for marking the information explicit to this new strain of infection in people. Artificial Intelligence centred tools can be designed and developed quickly for adapting the existing AI models and for leveraging the ability to modify and associating them with the preliminary clinical understanding to address the new group of COVID-19 and the novel challenges associated with it. In this paper, we look into a few techniques of Machine Learning and Deep Learning that have been employed to analyse Corona Virus Data.

摘要

新冠病毒病(COVID-19),也被称为冠状病毒病,是一种由冠状病毒引起的传染病。大量感染这种病毒的人将不得不面对并遭遇中度至重度的呼吸道疾病。老年人、病人、正在康复的人以及所有患有潜在健康并发症(如糖尿病、慢性呼吸道疾病和心血管疾病)的人,如果没有得到妥善照顾,都极易感染这种疾病。在当前情况下,既没有针对COVID-19的确切治疗方法,也没有疫苗。然而,有许多正在进行的临床试验在评估即将出现的治疗方法和疫苗。鉴于COVID-19的威胁性影响,计算机科学研究人员已开始使用机器学习和深度学习的各种技术和方法,通过X射线和CT图像来检测该疾病的存在。这里最大的障碍是可用的数据集很少。能够明确标记这种新型感染人群信息的专家也较少。可以快速设计和开发以人工智能为中心的工具,用于调整现有的人工智能模型,并利用其修改能力以及将它们与初步临床认识相关联的能力,来应对新型冠状病毒病群体及其相关的新挑战。在本文中,我们将探讨一些已用于分析冠状病毒数据的机器学习和深度学习技术。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b6e3/8056995/6027a9464071/42979_2021_605_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验