Suppr超能文献

常规血液学参数可能是 COVID-19 严重程度的预测指标。

Routine Hematological Parameters May Be Predictors of COVID-19 Severity.

作者信息

Szklanna Paulina B, Altaie Haidar, Comer Shane P, Cullivan Sarah, Kelliher Sarah, Weiss Luisa, Curran John, Dowling Emmet, O'Reilly Katherine M A, Cotter Aoife G, Marsh Brian, Gaine Sean, Power Nick, Lennon Áine, McCullagh Brian, Ní Áinle Fionnuala, Kevane Barry, Maguire Patricia B

机构信息

Conway SPHERE Research Group, Conway Institute, University College Dublin, Dublin, Ireland.

School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland.

出版信息

Front Med (Lausanne). 2021 Jul 16;8:682843. doi: 10.3389/fmed.2021.682843. eCollection 2021.

Abstract

To date, coronavirus disease 2019 (COVID-19) has affected over 100 million people globally. COVID-19 can present with a variety of different symptoms leading to manifestation of disease ranging from mild cases to a life-threatening condition requiring critical care-level support. At present, a rapid prediction of disease severity and critical care requirement in COVID-19 patients, in early stages of disease, remains an unmet challenge. Therefore, we assessed whether parameters from a routine clinical hematology workup, at the time of hospital admission, can be valuable predictors of COVID-19 severity and the requirement for critical care. Hematological data from the day of hospital admission (day of positive COVID-19 test) for patients with severe COVID-19 disease (requiring critical care during illness) and patients with non-severe disease (not requiring critical care) were acquired. The data were amalgamated and cleaned and modeling was performed. Using a decision tree model, we demonstrated that routine clinical hematology parameters are important predictors of COVID-19 severity. This proof-of-concept study shows that a combination of activated partial thromboplastin time, white cell count-to-neutrophil ratio, and platelet count can predict subsequent severity of COVID-19 with high sensitivity and specificity (area under ROC 0.9956) at the time of the patient's hospital admission. These data, pending further validation, indicate that a decision tree model with hematological parameters could potentially form the basis for a rapid risk stratification tool that predicts COVID-19 severity in hospitalized patients.

摘要

截至目前,2019冠状病毒病(COVID-19)已在全球影响超过1亿人。COVID-19可表现出多种不同症状,导致疾病表现从轻症到需要重症监护级支持的危及生命的状况不等。目前,在疾病早期快速预测COVID-19患者的疾病严重程度和重症监护需求仍然是一项未得到满足的挑战。因此,我们评估了入院时常规临床血液学检查的参数是否可作为COVID-19严重程度和重症监护需求的有价值预测指标。获取了重症COVID-19疾病患者(患病期间需要重症监护)和非重症疾病患者(不需要重症监护)入院当天(COVID-19检测呈阳性当天)的血液学数据。对数据进行了合并、清理并进行了建模。使用决策树模型,我们证明常规临床血液学参数是COVID-19严重程度的重要预测指标。这项概念验证研究表明,活化部分凝血活酶时间、白细胞计数与中性粒细胞比值以及血小板计数的组合能够在患者入院时以高灵敏度和特异性(ROC曲线下面积为0.9956)预测COVID-19的后续严重程度。这些数据在进一步验证之前表明,具有血液学参数的决策树模型可能潜在地构成一种快速风险分层工具的基础,该工具可预测住院患者的COVID-19严重程度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5678/8322583/ef76676d8665/fmed-08-682843-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验