Institute for Diabetes Research and Metabolic Diseases, Helmholtz Center Munich at the University of Tuebingen, Tuebingen, Germany.
German Center for Diabetes Research (DZD), Tuebingen, Germany.
Sci Adv. 2023 May 12;9(19):eadd0433. doi: 10.1126/sciadv.add0433.
This research addresses the assessment of adipose tissue (AT) and spatial distribution of visceral (VAT) and subcutaneous fat (SAT) in the trunk from standardized magnetic resonance imaging at 3 T, thereby demonstrating the feasibility of deep learning (DL)-based image segmentation in a large population-based cohort in Germany (five sites). Volume and distribution of AT play an essential role in the pathogenesis of insulin resistance, a risk factor of developing metabolic/cardiovascular diseases. Cross-validated training of the DL-segmentation model led to a mean Dice similarity coefficient of >0.94, corresponding to a mean absolute volume deviation of about 22 ml. SAT is significantly increased in women compared to men, whereas VAT is increased in males. Spatial distribution shows age- and body mass index-related displacements. DL-based image segmentation provides robust and fast quantification of AT (≈15 s per dataset versus 3 to 4 hours for manual processing) and assessment of its spatial distribution from magnetic resonance images in large cohort studies.
本研究旨在评估 3T 磁共振成像中内脏(VAT)和皮下脂肪(SAT)的脂肪组织(AT)和空间分布,从而证明基于深度学习(DL)的图像分割在德国(五个地点)大型基于人群队列中的可行性。AT 的体积和分布在胰岛素抵抗的发病机制中起着重要作用,而胰岛素抵抗是代谢/心血管疾病发生的一个风险因素。DL 分割模型的交叉验证训练导致 Dice 相似系数>0.94,对应于约 22 毫升的平均绝对体积偏差。与男性相比,女性的 SAT 明显增加,而 VAT 在男性中增加。空间分布显示出与年龄和身体质量指数相关的移位。基于 DL 的图像分割为磁共振图像中大队列研究中 AT 的快速准确量化提供了一种方法(每个数据集的处理时间约为 15 秒,而手动处理则需要 3 至 4 小时),并评估了其空间分布。