Suppr超能文献

基于 AlphaFold2 的蛋白质结构预测:注意力和对称性是否就是全部所需?

Protein structure prediction by AlphaFold2: are attention and symmetries all you need?

机构信息

Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA 02115, USA.

Department of Systems Biology, Columbia University, New York, NY 10032, USA.

出版信息

Acta Crystallogr D Struct Biol. 2021 Aug 1;77(Pt 8):982-991. doi: 10.1107/S2059798321007531. Epub 2021 Jul 29.

Abstract

The functions of most proteins result from their 3D structures, but determining their structures experimentally remains a challenge, despite steady advances in crystallography, NMR and single-particle cryoEM. Computationally predicting the structure of a protein from its primary sequence has long been a grand challenge in bioinformatics, intimately connected with understanding protein chemistry and dynamics. Recent advances in deep learning, combined with the availability of genomic data for inferring co-evolutionary patterns, provide a new approach to protein structure prediction that is complementary to longstanding physics-based approaches. The outstanding performance of AlphaFold2 in the recent Critical Assessment of protein Structure Prediction (CASP14) experiment demonstrates the remarkable power of deep learning in structure prediction. In this perspective, we focus on the key features of AlphaFold2, including its use of (i) attention mechanisms and Transformers to capture long-range dependencies, (ii) symmetry principles to facilitate reasoning over protein structures in three dimensions and (iii) end-to-end differentiability as a unifying framework for learning from protein data. The rules of protein folding are ultimately encoded in the physical principles that underpin it; to conclude, the implications of having a powerful computational model for structure prediction that does not explicitly rely on those principles are discussed.

摘要

大多数蛋白质的功能源于其 3D 结构,但尽管晶体学、NMR 和单颗粒 cryoEM 技术不断取得进展,实验确定其结构仍然具有挑战性。从其一级序列预测蛋白质结构长期以来一直是生物信息学中的一个重大挑战,与理解蛋白质化学和动力学密切相关。深度学习的最新进展,加上可用于推断共进化模式的基因组数据的可用性,为蛋白质结构预测提供了一种新方法,与基于物理的长期方法相辅相成。在最近的蛋白质结构预测关键评估 (CASP14) 实验中,AlphaFold2 的出色表现证明了深度学习在结构预测中的强大功能。在这篇观点文章中,我们重点介绍了 AlphaFold2 的关键特性,包括它对 (i) 注意力机制和 Transformer 的使用,以捕捉长程依赖关系,(ii) 对称原理,以促进对三维蛋白质结构的推理,以及 (iii) 端到端可微性,作为从蛋白质数据中学习的统一框架。蛋白质折叠的规则最终都编码在支撑它的物理原理中;最后,讨论了具有强大的计算模型进行结构预测而不明确依赖这些原理的含义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8c2/8329862/c3cc9aa7f053/d-77-00982-fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验