Suppr超能文献

开发和验证一种新的糖尿病指数,用于现有和新发糖尿病的风险分类:多队列研究。

Development and validation of a new diabetes index for the risk classification of present and new-onset diabetes: multicohort study.

机构信息

Department of Endocrinology and Metabolism, Hallym University College of Medicine, Chuncheon, Republic of Korea.

Division of Cardiology, National Health Insurance Service Ilsan Hospital, Goyang, Republic of Korea.

出版信息

Sci Rep. 2021 Aug 3;11(1):15748. doi: 10.1038/s41598-021-95341-8.

Abstract

In this study, we aimed to propose a novel diabetes index for the risk classification based on machine learning techniques with a high accuracy for diabetes mellitus. Upon analyzing their demographic and biochemical data, we classified the 2013-16 Korea National Health and Nutrition Examination Survey (KNHANES), the 2017-18 KNHANES, and the Korean Genome and Epidemiology Study (KoGES), as the derivation, internal validation, and external validation sets, respectively. We constructed a new diabetes index using logistic regression (LR) and calculated the probability of diabetes in the validation sets. We used the area under the receiver operating characteristic curve (AUROC) and Cox regression analysis to measure the performance of the internal and external validation sets, respectively. We constructed a gender-specific diabetes prediction model, having a resultant AUROC of 0.93 and 0.94 for men and women, respectively. Based on this probability, we classified participants into five groups and analyzed cumulative incidence from the KoGES dataset. Group 5 demonstrated significantly worse outcomes than those in other groups. Our novel model for predicting diabetes, based on two large-scale population-based cohort studies, showed high sensitivity and selectivity. Therefore, our diabetes index can be used to classify individuals at high risk of diabetes.

摘要

在这项研究中,我们旨在提出一种新的糖尿病指数,用于基于机器学习技术的风险分类,以实现对糖尿病的高精度分类。通过分析他们的人口统计学和生化数据,我们将 2013-16 年韩国国家健康和营养检查调查(KNHANES)、2017-18 年 KNHANES 和韩国基因组和流行病学研究(KoGES)分别归类为推导、内部验证和外部验证集。我们使用逻辑回归(LR)构建了一个新的糖尿病指数,并计算了验证集中糖尿病的概率。我们使用接收者操作特征曲线下的面积(AUROC)和 Cox 回归分析分别测量了内部和外部验证集的性能。我们构建了一个性别特异性的糖尿病预测模型,其男性和女性的 AUROC 分别为 0.93 和 0.94。基于这个概率,我们将参与者分为五组,并从 KoGES 数据集分析了累积发病率。第 5 组的结果明显比其他组差。我们基于两个大型基于人群的队列研究的预测糖尿病的新模型表现出了较高的灵敏度和选择性。因此,我们的糖尿病指数可用于对糖尿病高危个体进行分类。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e8ef/8333254/e10141d0c077/41598_2021_95341_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验