Suppr超能文献

卷积神经网络算法在数字化连接的自动体外除颤器中对可电击性心律失常的分类。

Convolution Neural Network Algorithm for Shockable Arrhythmia Classification Within a Digitally Connected Automated External Defibrillator.

机构信息

Division of Cardiology Healthcare Innovation Laboratory Scripps Clinic San Diego CA.

Carnegie Mellon University Pittsburgh PA.

出版信息

J Am Heart Assoc. 2023 Apr 18;12(8):e026974. doi: 10.1161/JAHA.122.026974. Epub 2023 Mar 21.

Abstract

Background Diagnosis of shockable rhythms leading to defibrillation remains integral to improving out-of-hospital cardiac arrest outcomes. New machine learning techniques have emerged to diagnose arrhythmias on ECGs. In out-of-hospital cardiac arrest, an algorithm within an automated external defibrillator is the major determinant to deliver defibrillation. This study developed and validated the performance of a convolution neural network (CNN) to diagnose shockable arrhythmias within a novel, miniaturized automated external defibrillator. Methods and Results There were 26 464 single-lead ECGs that comprised the study data set. ECGs of 7-s duration were retrospectively adjudicated by 3 physician readers (N=18 total readers). After exclusions (N=1582), ECGs were divided into training (N=23 156), validation (N=721), and test data sets (N=1005). CNN performance to diagnose shockable and nonshockable rhythms was reported with area under the receiver operating characteristic curve analysis, F1, and sensitivity and specificity calculations. The duration for the CNN to output was reported with the algorithm running within the automated external defibrillator. Internal and external validation analyses included CNN performance among arrhythmias, often mistaken for shockable rhythms, and performance among ECGs modified with noise to mimic artifacts. The CNN algorithm achieved an area under the receiver operating characteristic curve of 0.995 (95% CI, 0.990-1.0), sensitivity of 98%, and specificity of 100% to diagnose shockable rhythms. The F1 scores were 0.990 and 0.995 for shockable and nonshockable rhythms, respectively. After input of a 7-s ECG, the CNN generated an output in 383±29 ms (total time of 7.383 s). The CNN outperformed adjudicators in classifying atrial arrhythmias as nonshockable (specificity of 99.3%-98.1%) and was robust against noise artifacts (area under the receiver operating characteristic curve range, 0.871-0.999). Conclusions We demonstrate high diagnostic performance of a CNN algorithm for shockable and nonshockable rhythm arrhythmia classifications within a digitally connected automated external defibrillator. Registration URL: https://clinicaltrials.gov/ct2/show/NCT03662802; Unique identifier: NCT03662802.

摘要

背景

导致除颤的可电击节律的诊断仍然是改善院外心脏骤停结局的关键。新的机器学习技术已经出现,可以在心电图上诊断心律失常。在院外心脏骤停中,自动体外除颤器中的算法是决定除颤的主要因素。本研究开发并验证了卷积神经网络(CNN)在新型微型自动体外除颤器中诊断可电击性心律失常的性能。

方法和结果

共有 26464 例单导联心电图组成了研究数据集。由 3 位医师读者(共 18 位读者)对 7 秒持续时间的心电图进行回顾性裁决。排除(N=1582)后,心电图被分为训练集(N=23156)、验证集(N=721)和测试集(N=1005)。使用接收者操作特征曲线分析、F1 和敏感性、特异性计算来报告 CNN 诊断可电击和非电击节律的性能。报告了 CNN 在自动体外除颤器内运行时输出的时间。内部和外部验证分析包括 CNN 在易误诊为可电击节律的心律失常中的性能,以及在模仿伪影的噪声修改后的心电图中的性能。CNN 算法在诊断可电击节律时的曲线下面积为 0.995(95%CI,0.990-1.0),敏感性为 98%,特异性为 100%。对于可电击和非可电击节律,F1 评分分别为 0.990 和 0.995。输入 7 秒心电图后,CNN 在 383±29ms(总时间为 7.383s)内生成输出。CNN 在分类非可电击性房性心律失常方面优于裁决者(特异性为 99.3%-98.1%),并且对噪声伪影具有鲁棒性(接收者操作特征曲线下面积范围为 0.871-0.999)。

结论

我们证明了在数字化连接的自动体外除颤器中,CNN 算法对可电击和非可电击节律心律失常分类具有较高的诊断性能。

注册网址

https://clinicaltrials.gov/ct2/show/NCT03662802;独特标识符:NCT03662802。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a177/10227259/aca567f7cb30/JAH3-12-e026974-g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验