Computer Science and Engineering (CSE) Department, Indian Institute of Technology (IIT) Bombay, Mumbai, India; IITB-Monash Research Academy, Indian Institute of Technology (IIT) Bombay, Mumbai, India.
Computer Science and Engineering (CSE) Department, Indian Institute of Technology (IIT) Bombay, Mumbai, India.
Med Image Anal. 2021 Oct;73:102187. doi: 10.1016/j.media.2021.102187. Epub 2021 Jul 27.
Radiation exposure in positron emission tomography (PET) imaging limits its usage in the studies of radiation-sensitive populations, e.g., pregnant women, children, and adults that require longitudinal imaging. Reducing the PET radiotracer dose or acquisition time reduces photon counts, which can deteriorate image quality. Recent deep-neural-network (DNN) based methods for image-to-image translation enable the mapping of low-quality PET images (acquired using substantially reduced dose), coupled with the associated magnetic resonance imaging (MRI) images, to high-quality PET images. However, such DNN methods focus on applications involving test data that match the statistical characteristics of the training data very closely and give little attention to evaluating the performance of these DNNs on new out-of-distribution (OOD) acquisitions. We propose a novel DNN formulation that models the (i) underlying sinogram-based physics of the PET imaging system and (ii) the uncertainty in the DNN output through the per-voxel heteroscedasticity of the residuals between the predicted and the high-quality reference images. Our sinogram-based uncertainty-aware DNN framework, namely, suDNN, estimates a standard-dose PET image using multimodal input in the form of (i) a low-dose/low-count PET image and (ii) the corresponding multi-contrast MRI images, leading to improved robustness of suDNN to OOD acquisitions. Results on in vivo simultaneous PET-MRI, and various forms of OOD data in PET-MRI, show the benefits of suDNN over the current state of the art, quantitatively and qualitatively.
正电子发射断层扫描(PET)成像中的辐射暴露限制了其在辐射敏感人群(如孕妇、儿童和需要纵向成像的成年人)研究中的应用。降低 PET 放射性示踪剂剂量或采集时间会减少光子计数,从而降低图像质量。最近基于深度神经网络(DNN)的图像到图像转换方法能够将低质量的 PET 图像(使用大大减少的剂量获得)与相关的磁共振成像(MRI)图像映射到高质量的 PET 图像。然而,这些 DNN 方法主要关注涉及与训练数据非常接近的测试数据的应用,而很少关注评估这些 DNN 在新的离群(OOD)采集上的性能。我们提出了一种新的 DNN 公式,该公式通过预测和高质量参考图像之间的残差的每个体素的异方差性来建模 (i) PET 成像系统的基于正弦图的物理和 (ii) DNN 输出的不确定性。我们的基于正弦图的不确定性感知 DNN 框架,即 suDNN,使用多模态输入(低剂量/低计数 PET 图像和相应的多对比度 MRI 图像)来估计标准剂量 PET 图像,从而提高 suDNN 对 OOD 采集的鲁棒性。在体内同时进行的 PET-MRI 以及各种形式的 PET-MRI 中的 OOD 数据上的结果表明,suDNN 优于当前的最先进技术,无论是在定量还是定性方面。