Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, Paterna, 46980, Valencia, Spain.
Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, Paterna, 46980, Valencia, Spain; Department of Microbiology and Ecology, University of Valencia, Valencia, Spain.
Environ Res. 2022 Jan;203:111831. doi: 10.1016/j.envres.2021.111831. Epub 2021 Aug 2.
The ongoing coronavirus 2019 (COVID-19) pandemic constitutes a concerning global threat to public health and economy. In the midst of this pandemic scenario, the role of environment-to-human COVID-19 spread is still a matter of debate because mixed results have been reported concerning SARS-CoV-2 stability on high-touch surfaces in real-life scenarios. Up to now, no alternative and accessible procedures for cell culture have been applied to evaluate SARS-CoV-2 infectivity on fomites. Several strategies based on viral capsid integrity have latterly been developed using viability markers to selectively remove false-positive qPCR signals resulting from free nucleic acids and damaged viruses. These have finally allowed an estimation of viral infectivity. The present study aims to provide a rapid molecular-based protocol for detection and quantification of viable SARS-CoV-2 from fomites based on the discrimination of non-infectious SARS-CoV-2 particles by platinum chloride (IV) (PtCl) viability RT-qPCR. An initial assessment compared two different swabbing procedures to recover inactivated SARS-CoV-2 particles from fomites coupled with two RNA extraction methods. Procedures were validated with human (E229) and porcine (PEDV) coronavirus surrogates, and compared with inactivated SARS-CoV-2 suspensions on glass, steel and plastic surfaces. The viability RT-qPCR efficiently removed the PCR amplification signals from heat and gamma-irradiated inactivated SARS-CoV-2 suspensions that had been collected from specified surfaces. This study proposes a rapid viability RT-qPCR that discriminates non-infectious SARS-CoV-2 particles on surfaces thus helping researchers to better understand the risk of contracting COVID-19 through contact with fomites and to develop more efficient epidemiological measures.
正在进行的 2019 年冠状病毒(COVID-19)大流行对公共卫生和经济构成了令人担忧的全球威胁。在这种大流行的背景下,环境向人类传播 COVID-19 的作用仍然存在争议,因为在现实场景中,有关 SARS-CoV-2 在高接触表面上的稳定性的结果并不一致。到目前为止,还没有替代的、可获得的细胞培养程序来评估 SARS-CoV-2 在污染物上的感染力。最近,已经开发了几种基于病毒衣壳完整性的策略,使用生存力标志物来选择性地去除来自游离核酸和受损病毒的假阳性 qPCR 信号。这些策略最终允许估计病毒的感染力。本研究旨在提供一种快速的基于分子的检测和定量方法,用于从污染物中检测和定量有活力的 SARS-CoV-2,该方法基于通过氯化铂(IV)(PtCl)对非感染性 SARS-CoV-2 颗粒进行活力 RT-qPCR 区分。初步评估比较了两种不同的拭子程序,以从污染物中回收失活的 SARS-CoV-2 颗粒,并结合两种 RNA 提取方法。该程序用人类(E229)和猪(PEDV)冠状病毒替代物进行了验证,并与玻璃、钢和塑料表面上的失活 SARS-CoV-2 悬浮液进行了比较。活力 RT-qPCR 有效地去除了从指定表面收集的热和γ辐照失活 SARS-CoV-2 悬浮液的 PCR 扩增信号。本研究提出了一种快速的活力 RT-qPCR,可以区分表面上的非感染性 SARS-CoV-2 颗粒,从而帮助研究人员更好地了解通过接触污染物感染 COVID-19 的风险,并开发更有效的流行病学措施。