KU Leuven campus Bruges, Department of Rehabilitation Sciences, Bruges, 8200, Belgium.
TU Delft, Department of Mechanical, Maritime and Materials Engineering, Delft, 2628 CD, the Netherlands.
Sci Data. 2021 Aug 5;8(1):208. doi: 10.1038/s41597-021-00995-8.
Skin-attached inertial sensors are increasingly used for kinematic analysis. However, their ability to measure outside-lab can only be exploited after correctly aligning the sensor axes with the underlying anatomical axes. Emerging model-based inertial-sensor-to-bone alignment methods relate inertial measurements with a model of the joint to overcome calibration movements and sensor placement assumptions. It is unclear how good such alignment methods can identify the anatomical axes. Any misalignment results in kinematic cross-talk errors, which makes model validation and the interpretation of the resulting kinematics measurements challenging. This study provides an anatomically correct ground-truth reference dataset from dynamic motions on a cadaver. In contrast with existing references, this enables a true model evaluation that overcomes influences from soft-tissue artifacts, orientation and manual palpation errors. This dataset comprises extensive dynamic movements that are recorded with multimodal measurements including trajectories of optical and virtual (via computed tomography) anatomical markers, reference kinematics, inertial measurements, transformation matrices and visualization tools. The dataset can be used either as a ground-truth reference or to advance research in inertial-sensor-to-bone-alignment.
皮肤附着式惯性传感器越来越多地用于运动学分析。然而,只有在正确地将传感器轴与潜在的解剖轴对齐后,才能利用它们进行实验室外的测量。新兴的基于模型的惯性传感器到骨骼的对齐方法将惯性测量与关节模型相关联,以克服校准运动和传感器放置假设。目前尚不清楚这种对齐方法可以在多大程度上正确识别解剖轴。任何的不对准都会导致运动学串扰误差,这使得模型验证和对所得到的运动学测量结果的解释具有挑战性。本研究提供了一个来自尸体动态运动的解剖学上正确的真实参考数据集。与现有的参考数据集相比,这使得真正的模型评估成为可能,克服了软组织伪影、方向和手动触诊误差的影响。该数据集包含广泛的动态运动,这些运动是通过包括光学和虚拟(通过计算机断层扫描)解剖标记轨迹、参考运动学、惯性测量、变换矩阵和可视化工具在内的多模态测量来记录的。该数据集既可以用作真实参考数据集,也可以用于推进惯性传感器到骨骼的对齐研究。