Suppr超能文献

线粒体热休克蛋白介导的抗炎诊疗学

Mitochondrial HS-Mediated Anti-Inflammatory Theranostics.

作者信息

Kim Won Young, Won Miae, Koo Seyoung, Zhang Xingcai, Kim Jong Seung

机构信息

Department of Chemistry, Korea University, Seoul, 02841, Korea.

John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA.

出版信息

Nanomicro Lett. 2021 Aug 5;13(1):168. doi: 10.1007/s40820-021-00689-1.

Abstract

The insistent demand for space-controllable delivery, which reduces the side effects of non-steroidal anti-inflammatory drugs (NSAIDs), has led to the development of a new theranostics-based approach for anti-inflammatory therapy. The current anti-inflammatory treatments can be improved by designing a drug delivery system responsive to the inflammatory site biomarker, hydrogen polysulfide (HS). Here, we report a novel theranostic agent 1 (TA1), consisting of three parts: HS-mediated triggering part, a two-photon fluorophore bearing mitochondria targeting unit (Rhodol-TPP), and anti-inflammatory COX inhibitor (indomethacin). In vitro experiments showed that TA1 selectively reacts with HS to concomitantly release both Rhodol-TPP and indomethacin. Confocal-microscopy imaging of inflammation-induced live cells suggested that TA1 is localized in the mitochondria where the HS is overexpressed. The TA1 reacted with HS in the endogenous and exogenous HS environments and in lipopolysaccharide treated inflammatory cells. Moreover, TA1 suppressed COX-2 level in the inflammatory-induced cells and prostaglandin E (PGE) level in blood serum from inflammation-induced mouse models. In vivo experiments with inflammation-induced mouse models suggested that TA1 exhibits inflammation-site-elective drug release followed by significant therapeutic effects, showing its function as a theranostic agent, capable of both anti-inflammatory therapy and precise diagnosis. Theranostic behavior of TA1 is highly applicable in vivo model therapeutics for the inflammatory disease.

摘要

对空间可控给药的迫切需求,这种给药方式可减少非甾体抗炎药(NSAIDs)的副作用,已促使一种基于诊疗一体化的抗炎治疗新方法得以发展。通过设计一种对炎症部位生物标志物多硫化氢(HS)有响应的药物递送系统,可以改进当前的抗炎治疗方法。在此,我们报告了一种新型诊疗试剂1(TA1),它由三部分组成:HS介导的触发部分、带有线粒体靶向单元的双光子荧光团(罗丹明-TPP)以及抗炎COX抑制剂(吲哚美辛)。体外实验表明,TA1与HS选择性反应,同时释放罗丹明-TPP和吲哚美辛。对炎症诱导的活细胞进行共聚焦显微镜成像显示,TA1定位于HS过表达的线粒体中。TA1在内源性和外源性HS环境以及脂多糖处理的炎症细胞中均能与HS反应。此外,TA1可抑制炎症诱导细胞中的COX-2水平以及炎症诱导小鼠模型血清中的前列腺素E(PGE)水平。对炎症诱导小鼠模型进行的体内实验表明,TA1表现出炎症部位选择性药物释放,并随后产生显著的治疗效果,显示出其作为一种诊疗试剂的功能,能够同时进行抗炎治疗和精确诊断。TA1的诊疗行为在炎症性疾病的体内模型治疗中具有高度适用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eb2c/8342730/25a4f642f75e/40820_2021_689_Sch1_HTML.jpg

相似文献

1
Mitochondrial HS-Mediated Anti-Inflammatory Theranostics.
Nanomicro Lett. 2021 Aug 5;13(1):168. doi: 10.1007/s40820-021-00689-1.
3
A FRET-based ratiometric fluorescent probe for highly selective detection of hydrogen polysulfides based on a coumarin-rhodol derivative.
Spectrochim Acta A Mol Biomol Spectrosc. 2020 Nov 5;241:118650. doi: 10.1016/j.saa.2020.118650. Epub 2020 Jun 29.
4
A semi-naphthorhodafluor-based red-emitting fluorescent probe for tracking of hydrogen polysulfide in living cells and zebrafish.
Spectrochim Acta A Mol Biomol Spectrosc. 2021 Feb 15;247:119105. doi: 10.1016/j.saa.2020.119105. Epub 2020 Oct 24.
5
Monitoring hydrogen polysulfide during ferroptosis with a two-photon fluorescent probe.
Talanta. 2021 Sep 1;232:122467. doi: 10.1016/j.talanta.2021.122467. Epub 2021 May 4.
7
Near-infrared fluorescent probe for imaging mitochondrial hydrogen polysulfides in living cells and in vivo.
Anal Chem. 2015 Apr 7;87(7):3631-8. doi: 10.1021/ac5044237. Epub 2015 Mar 17.
8
A highly selective fluorescent probe for hydrogen polysulfides in living cells based on a naphthalene derivative.
Spectrochim Acta A Mol Biomol Spectrosc. 2020 Feb 15;227:117579. doi: 10.1016/j.saa.2019.117579. Epub 2019 Oct 15.
10
A novel lysosome-located fluorescent probe for highly selective determination of hydrogen polysulfides based on a naphthalimide derivative.
Spectrochim Acta A Mol Biomol Spectrosc. 2022 Mar 5;268:120708. doi: 10.1016/j.saa.2021.120708. Epub 2021 Dec 5.

引用本文的文献

1
Exosomes in Disease Therapy: Plant-Derived Exosome-Like Nanoparticles Current Status, Challenges, and Future Prospects.
Int J Nanomedicine. 2025 Aug 30;20:10613-10644. doi: 10.2147/IJN.S540094. eCollection 2025.
2
Comprehensive wound healing using ETN@FeS complex by positively regulating multiple programmed phases.
J Nanobiotechnology. 2025 May 13;23(1):342. doi: 10.1186/s12951-025-03396-w.
3
Recent advances in mitochondria-targeting theranostic agents.
Exploration (Beijing). 2024 Mar 5;4(4):20230063. doi: 10.1002/EXP.20230063. eCollection 2024 Aug.
4
Nanotechnology in inflammation: cutting-edge advances in diagnostics, therapeutics and theranostics.
Theranostics. 2024 Apr 8;14(6):2490-2525. doi: 10.7150/thno.91394. eCollection 2024.
5
ROS Balance Autoregulating Core-Shell CeO@ZIF-8/Au Nanoplatform for Wound Repair.
Nanomicro Lett. 2024 Mar 21;16(1):156. doi: 10.1007/s40820-024-01353-0.
6
Bioinspired nanogels as cell-free DNA trapping and scavenging organelles for rheumatoid arthritis treatment.
Proc Natl Acad Sci U S A. 2023 Aug 15;120(33):e2303385120. doi: 10.1073/pnas.2303385120. Epub 2023 Aug 7.
7
Organelle-Targeted Fluorescent Probes for Sulfane Sulfur Species.
Antioxidants (Basel). 2023 Feb 27;12(3):590. doi: 10.3390/antiox12030590.
9
Regulating the microenvironment with nanomaterials: Potential strategies to ameliorate COVID-19.
Acta Pharm Sin B. 2023 Feb 21;13(9):3638-58. doi: 10.1016/j.apsb.2023.02.010.

本文引用的文献

1
Novel Cyanostilbene-Based Fluorescent Chemoprobe for Hydroxyl Radicals and Its Two-Photon Bioimaging in Living Cells.
ACS Appl Bio Mater. 2019 Feb 18;2(2):936-942. doi: 10.1021/acsabm.8b00796. Epub 2019 Jan 28.
2
Prostaglandin E promotes intestinal inflammation via inhibiting microbiota-dependent regulatory T cells.
Sci Adv. 2021 Feb 12;7(7). doi: 10.1126/sciadv.abd7954. Print 2021 Feb.
3
Immunogenic-cell-killing and immunosuppression-inhibiting nanomedicine.
Bioact Mater. 2020 Nov 19;6(6):1513-1527. doi: 10.1016/j.bioactmat.2020.11.016. eCollection 2021 Jun.
4
In situ sprayed NIR-responsive, analgesic black phosphorus-based gel for diabetic ulcer treatment.
Proc Natl Acad Sci U S A. 2020 Nov 17;117(46):28667-28677. doi: 10.1073/pnas.2016268117. Epub 2020 Nov 2.
5
Cardiovascular effects and safety of (non-aspirin) NSAIDs.
Nat Rev Cardiol. 2020 Sep;17(9):574-584. doi: 10.1038/s41569-020-0366-z. Epub 2020 Apr 22.
7
Cardiovascular phenotype of mice lacking 3-mercaptopyruvate sulfurtransferase.
Biochem Pharmacol. 2020 Jun;176:113833. doi: 10.1016/j.bcp.2020.113833. Epub 2020 Feb 4.
9
Rational Design of Specific Recognition Molecules for Simultaneously Monitoring of Endogenous Polysulfide and Hydrogen Sulfide in the Mouse Brain.
Angew Chem Int Ed Engl. 2019 Sep 23;58(39):13948-13953. doi: 10.1002/anie.201907210. Epub 2019 Aug 14.
10
Dual-Stimuli Responsive Bismuth Nanoraspberries for Multimodal Imaging and Combined Cancer Therapy.
Nano Lett. 2018 Nov 14;18(11):6778-6788. doi: 10.1021/acs.nanolett.8b02639. Epub 2018 Oct 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验