Billot Benjamin, Cerri Stefano, Van Leemput Koen, Dalca Adrian V, Iglesias Juan Eugenio
Center for Medical Image Computing, University College London, UK.
Department of Health Technology, Technical University of Denmark, Denmark.
Proc IEEE Int Symp Biomed Imaging. 2021 Apr;2021:1971-1974. doi: 10.1109/isbi48211.2021.9434127. Epub 2021 May 25.
We present the first deep learning method to segment Multiple Sclerosis lesions and brain structures from MRI scans of any (possibly multimodal) contrast and resolution. Our method only requires segmentations to be trained (no images), as it leverages the generative model of Bayesian segmentation to generate synthetic scans with simulated lesions, which are then used to train a CNN. Our method can be retrained to segment at any resolution by adjusting the amount of synthesised partial volume. By construction, the synthetic scans are perfectly aligned with their labels, which enables training with noisy labels obtained with automatic methods. The training data are generated on the fly, and aggressive augmentation (including artefacts) is applied for improved generalisation. We demonstrate our method on two public datasets, comparing it with a state-of-the-art Bayesian approach implemented in FreeSurfer, and dataset specific CNNs trained on real data. The code is available at https://github.com/BBillot/SynthSeg.
我们提出了第一种深度学习方法,可从任意(可能是多模态的)对比度和分辨率的磁共振成像(MRI)扫描中分割出多发性硬化症病变和脑结构。我们的方法仅需要对分割结果进行训练(无需图像),因为它利用贝叶斯分割的生成模型来生成带有模拟病变的合成扫描,然后将其用于训练卷积神经网络(CNN)。通过调整合成部分容积的量,我们的方法可以重新训练以在任何分辨率下进行分割。通过构建,合成扫描与其标签完美对齐,这使得能够使用通过自动方法获得的噪声标签进行训练。训练数据是即时生成的,并应用了激进的数据增强(包括伪影)以提高泛化能力。我们在两个公共数据集上展示了我们的方法,并将其与在FreeSurfer中实现的最先进的贝叶斯方法以及在真实数据上训练的特定数据集的CNN进行了比较。代码可在https://github.com/BBillot/SynthSeg获取。