Suppr超能文献

临床MRI中MS病变勾画工具的扫描仪无关大规模评估

Scanner agnostic large-scale evaluation of MS lesion delineation tool for clinical MRI.

作者信息

Hindsholm Amalie Monberg, Andersen Flemming Littrup, Cramer Stig Præstekjær, Simonsen Helle Juhl, Askløf Mathias Gæde, Magyari Melinda, Madsen Poul Nørgaard, Hansen Adam Espe, Sellebjerg Finn, Larsson Henrik Bo Wiberg, Langkilde Annika Reynberg, Frederiksen Jette Lautrup, Højgaard Liselotte, Ladefoged Claes Nøhr, Lindberg Ulrich

机构信息

Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark.

Department of Neurology, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark.

出版信息

Front Neurosci. 2023 May 19;17:1177540. doi: 10.3389/fnins.2023.1177540. eCollection 2023.

Abstract

INTRODUCTION

Patients with MS are MRI scanned continuously throughout their disease course resulting in a large manual workload for radiologists which includes lesion detection and size estimation. Though many models for automatic lesion segmentation have been published, few are used broadly in clinic today, as there is a lack of testing on clinical datasets. By collecting a large, heterogeneous training dataset directly from our MS clinic we aim to present a model which is robust to different scanner protocols and artefacts and which only uses MRI modalities present in routine clinical examinations.

METHODS

We retrospectively included 746 patients from routine examinations at our MS clinic. The inclusion criteria included acquisition at one of seven different scanners and an MRI protocol including 2D or 3D T2-w FLAIR, T2-w and T1-w images. Reference lesion masks on the training ( = 571) and validation ( = 70) datasets were generated using a preliminary segmentation model and subsequent manual correction. The test dataset ( = 100) was manually delineated. Our segmentation model https://github.com/CAAI/AIMS/ was based on the popular nnU-Net, which has won several biomedical segmentation challenges. We tested our model against the published segmentation models HD-MS-Lesions, which is also based on nnU-Net, trained with a more homogenous patient cohort. We furthermore tested model robustness to data from unseen scanners by performing a leave-one-scanner-out experiment.

RESULTS

We found that our model was able to segment MS white matter lesions with a performance comparable to literature: DSC = 0.68, precision = 0.90, recall = 0.70, f1 = 0.78. Furthermore, the model outperformed HD-MS-Lesions in all metrics except precision = 0.96. In the leave-one-scanner-out experiment there was no significant change in performance ( < 0.05) between any of the models which were only trained on part of the dataset and the full segmentation model.

CONCLUSION

In conclusion we have seen, that by including a large, heterogeneous dataset emulating clinical reality, we have trained a segmentation model which maintains a high segmentation performance while being robust to data from unseen scanners. This broadens the applicability of the model in clinic and paves the way for clinical implementation.

摘要

引言

多发性硬化症(MS)患者在整个病程中需要持续进行MRI扫描,这给放射科医生带来了巨大的手工工作量,包括病变检测和大小估计。尽管已经发表了许多用于自动病变分割的模型,但由于缺乏对临床数据集的测试,目前很少有模型在临床上得到广泛应用。通过直接从我们的MS诊所收集一个大型的、异质性的训练数据集,我们旨在提出一种对不同扫描协议和伪影具有鲁棒性的模型,该模型仅使用常规临床检查中存在的MRI模态。

方法

我们回顾性纳入了来自我们MS诊所常规检查的746例患者。纳入标准包括在七种不同扫描仪之一上进行采集,以及包括二维或三维T2加权液体衰减反转恢复(FLAIR)、T2加权和T1加权图像的MRI协议。使用初步分割模型和随后的手动校正生成训练集(n = 571)和验证集(n = 70)上的参考病变掩码。测试集(n = 100)是手动勾勒的。我们的分割模型https://github.com/CAAI/AIMS/基于流行的nnU-Net,该模型赢得了多项生物医学分割挑战。我们将我们的模型与已发表的分割模型HD-MS-Lesions进行了测试,HD-MS-Lesions也基于nnU-Net,使用更同质的患者队列进行训练。此外,我们通过进行留一扫描仪实验来测试模型对来自未知扫描仪数据的鲁棒性。

结果

我们发现我们的模型能够分割MS白质病变,其性能与文献相当:DSC = 0.68,精确率 = 0.90,召回率 = 0.70,F1值 = 0.78。此外,除了精确率 = 0.96外,该模型在所有指标上均优于HD-MS-Lesions。在留一扫描仪实验中,仅在部分数据集上训练的任何模型与完整分割模型之间的性能没有显著变化(P < 0.05)。

结论

总之,我们已经看到,通过纳入一个模拟临床现实的大型异质性数据集,我们训练了一个分割模型,该模型在保持高分割性能的同时,对来自未知扫描仪的数据具有鲁棒性。这拓宽了该模型在临床上的适用性,并为临床实施铺平了道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/139a/10235534/af02051f605a/fnins-17-1177540-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验