Chan Zuckerberg Biohub, San Francisco, California, United States of America.
Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, United States of America.
PLoS Comput Biol. 2021 Aug 9;17(8):e1009257. doi: 10.1371/journal.pcbi.1009257. eCollection 2021 Aug.
Manual microscopic inspection of fixed and stained blood smears has remained the gold standard for Plasmodium parasitemia analysis for over a century. Unfortunately, smear preparation consumes time and reagents, while manual microscopy is skill-dependent and labor-intensive. Here, we demonstrate that deep learning enables both life stage classification and accurate parasitemia quantification of ordinary brightfield microscopy images of live, unstained red blood cells. We tested our method using both a standard light microscope equipped with visible and near-ultraviolet (UV) illumination, and a custom-built microscope employing deep-UV illumination. While using deep-UV light achieved an overall four-category classification of Plasmodium falciparum blood stages of greater than 99% and a recall of 89.8% for ring-stage parasites, imaging with near-UV light on a standard microscope resulted in 96.8% overall accuracy and over 90% recall for ring-stage parasites. Both imaging systems were tested extrinsically by parasitemia titration, revealing superior performance over manually-scored Giemsa-stained smears, and a limit of detection below 0.1%. Our results establish that label-free parasitemia analysis of live cells is possible in a biomedical laboratory setting without the need for complex optical instrumentation. We anticipate future extensions of this work could enable label-free clinical diagnostic measurements, one day eliminating the need for conventional blood smear analysis.
一个多世纪以来,固定和染色血涂片的人工显微镜检查一直是疟原虫寄生虫分析的金标准。不幸的是,涂片制备既耗时又费试剂,而人工显微镜检查则依赖于技能且劳动强度大。在这里,我们证明深度学习可对普通明场显微镜下的活未染色红细胞图像进行生活阶段分类和准确的寄生虫定量分析。我们使用配备可见光和近紫外线(UV)照明的标准显微镜和采用深紫外线照明的定制显微镜来测试我们的方法。虽然使用深紫外线光可实现大于 99%的恶性疟原虫血阶段的整体四分类,并对环状期寄生虫的召回率为 89.8%,但在标准显微镜上使用近紫外线光成像可使环状期寄生虫的总体准确率达到 96.8%以上,召回率超过 90%。这两个成像系统都通过寄生虫定量测定进行了外部测试,结果表明其性能优于人工评分的吉姆萨染色涂片,检测限低于 0.1%。我们的研究结果表明,在生物医学实验室环境中,无需复杂的光学仪器即可实现对活细胞的无标记寄生虫定量分析。我们预计这项工作的未来扩展可以实现无标记的临床诊断测量,有朝一日可能会消除对传统血涂片分析的需求。