Opt Lett. 2020 Oct 15;45(20):5684-5687. doi: 10.1364/OL.401105.
Standard microscopes offer a variety of settings to help improve the visibility of different specimens to the end microscope user. Increasingly, however, digital microscopes are used to capture images for automated interpretation by computer algorithms (e.g., for feature classification, detection, or segmentation), often without any human involvement. In this work, we investigate an approach to jointly optimize multiple microscope settings, together with a classification network, for improved performance with such automated tasks. We explore the interplay between optimization of programmable illumination and pupil transmission, using experimentally imaged blood smears for automated malaria parasite detection, to show that multi-element "learned sensing" outperforms its single-element counterpart. While not necessarily ideal for human interpretation, the network's resulting low-resolution microscope images (20X-comparable) offer a machine learning network sufficient contrast to match the classification performance of corresponding high-resolution imagery (100X-comparable), pointing a path toward accurate automation over large fields-of-view.
标准显微镜提供了多种设置,以帮助提高不同标本的可见度,最终满足显微镜用户的需求。然而,越来越多的数字显微镜被用于捕获图像,以便通过计算机算法进行自动解释(例如,用于特征分类、检测或分割),通常不需要任何人工干预。在这项工作中,我们研究了一种联合优化多种显微镜设置的方法,以及一个分类网络,以提高此类自动化任务的性能。我们探索了可编程照明和瞳孔传输优化之间的相互作用,使用实验成像的血涂片进行自动化疟疾寄生虫检测,以表明多元素“学习感知”优于其单元素对应物。虽然对于人工解释来说不一定理想,但网络生成的低分辨率显微镜图像(20X 可比)为机器学习网络提供了足够的对比度,可与相应的高分辨率图像(100X 可比)的分类性能相匹配,为在大视场中实现准确的自动化指明了道路。