Health Informatics Department, Middle East Technical University, Ankara, Turkey.
Computer Science Department, University of Zambia, Lusaka, Zambia.
J Digit Imaging. 2020 Jun;33(3):763-775. doi: 10.1007/s10278-019-00284-2.
Malaria is a serious public health problem in many parts of the world. Early diagnosis and prompt effective treatment are required to avoid anemia, organ failure, and malaria-associated deaths. Microscopic analysis of blood samples is the preferred method for diagnosis. However, manual microscopic examination is very laborious and requires skilled health personnel of which there is a critical shortage in the developing world such as in sub-Saharan Africa. Critical shortages of trained health personnel and the inability to cope with the workload to examine malaria slides are among the main limitations of malaria microscopy especially in low-resource and high disease burden areas. We present a low-cost alternative and complementary solution for rapid malaria screening for low resource settings to potentially reduce the dependence on manual microscopic examination. We develop an image processing pipeline using a modified YOLOv3 detection algorithm to run in real time on low-cost devices. We test the performance of our solution on two datasets. In the dataset collected using a microscope camera, our model achieved 99.07% accuracy and 97.46% accuracy on the dataset collected using a mobile phone camera. While the mean average precision of our model is on par with human experts at an object level, we are several orders of magnitude faster than human experts as we can detect parasites in images as well as videos in real time.
疟疾是世界上许多地区严重的公共卫生问题。为避免贫血、器官衰竭和与疟疾相关的死亡,需要早期诊断和及时有效的治疗。对血液样本进行显微镜分析是诊断的首选方法。然而,手动显微镜检查非常繁琐,需要有熟练的卫生人员,而在发展中国家,如撒哈拉以南非洲,这种人员严重短缺。训练有素的卫生人员短缺以及无法应对检查疟疾载玻片的工作量是疟疾显微镜检查的主要限制因素之一,尤其是在资源匮乏和疾病负担高的地区。我们为资源匮乏的环境提供了一种低成本的替代和补充性快速疟疾筛查解决方案,以减少对人工显微镜检查的依赖。我们使用经过修改的 YOLOv3 检测算法开发了一个图像处理管道,可以在低成本设备上实时运行。我们在两个数据集上测试了我们的解决方案的性能。在使用显微镜相机收集的数据集上,我们的模型在使用手机相机收集的数据集上达到了 99.07%的准确率和 97.46%的准确率。虽然我们的模型在物体级别上的平均准确率与人类专家相当,但我们的速度比人类专家快几个数量级,因为我们可以实时检测图像和视频中的寄生虫。