Suppr超能文献

实时薄血涂片疟原虫筛查在资源匮乏环境中的应用。

Real-time Malaria Parasite Screening in Thick Blood Smears for Low-Resource Setting.

机构信息

Health Informatics Department, Middle East Technical University, Ankara, Turkey.

Computer Science Department, University of Zambia, Lusaka, Zambia.

出版信息

J Digit Imaging. 2020 Jun;33(3):763-775. doi: 10.1007/s10278-019-00284-2.

Abstract

Malaria is a serious public health problem in many parts of the world. Early diagnosis and prompt effective treatment are required to avoid anemia, organ failure, and malaria-associated deaths. Microscopic analysis of blood samples is the preferred method for diagnosis. However, manual microscopic examination is very laborious and requires skilled health personnel of which there is a critical shortage in the developing world such as in sub-Saharan Africa. Critical shortages of trained health personnel and the inability to cope with the workload to examine malaria slides are among the main limitations of malaria microscopy especially in low-resource and high disease burden areas. We present a low-cost alternative and complementary solution for rapid malaria screening for low resource settings to potentially reduce the dependence on manual microscopic examination. We develop an image processing pipeline using a modified YOLOv3 detection algorithm to run in real time on low-cost devices. We test the performance of our solution on two datasets. In the dataset collected using a microscope camera, our model achieved 99.07% accuracy and 97.46% accuracy on the dataset collected using a mobile phone camera. While the mean average precision of our model is on par with human experts at an object level, we are several orders of magnitude faster than human experts as we can detect parasites in images as well as videos in real time.

摘要

疟疾是世界上许多地区严重的公共卫生问题。为避免贫血、器官衰竭和与疟疾相关的死亡,需要早期诊断和及时有效的治疗。对血液样本进行显微镜分析是诊断的首选方法。然而,手动显微镜检查非常繁琐,需要有熟练的卫生人员,而在发展中国家,如撒哈拉以南非洲,这种人员严重短缺。训练有素的卫生人员短缺以及无法应对检查疟疾载玻片的工作量是疟疾显微镜检查的主要限制因素之一,尤其是在资源匮乏和疾病负担高的地区。我们为资源匮乏的环境提供了一种低成本的替代和补充性快速疟疾筛查解决方案,以减少对人工显微镜检查的依赖。我们使用经过修改的 YOLOv3 检测算法开发了一个图像处理管道,可以在低成本设备上实时运行。我们在两个数据集上测试了我们的解决方案的性能。在使用显微镜相机收集的数据集上,我们的模型在使用手机相机收集的数据集上达到了 99.07%的准确率和 97.46%的准确率。虽然我们的模型在物体级别上的平均准确率与人类专家相当,但我们的速度比人类专家快几个数量级,因为我们可以实时检测图像和视频中的寄生虫。

相似文献

8
Deep Learning for Smartphone-Based Malaria Parasite Detection in Thick Blood Smears.基于深度学习的智能手机厚血涂片疟原虫检测
IEEE J Biomed Health Inform. 2020 May;24(5):1427-1438. doi: 10.1109/JBHI.2019.2939121. Epub 2019 Sep 23.
10
Automatic detection of parasites from microscopic blood images.从显微血液图像中自动检测寄生虫。
J Parasit Dis. 2020 Mar;44(1):69-78. doi: 10.1007/s12639-019-01163-x. Epub 2019 Sep 20.

引用本文的文献

本文引用的文献

1
Applying Faster R-CNN for Object Detection on Malaria Images.将更快的区域卷积神经网络(Faster R-CNN)应用于疟疾图像的目标检测
Conf Comput Vis Pattern Recognit Workshops. 2017 Jul;2017:808-813. doi: 10.1109/cvprw.2017.112. Epub 2021 Nov 18.
2
Focal Loss for Dense Object Detection.用于密集目标检测的焦散损失
IEEE Trans Pattern Anal Mach Intell. 2020 Feb;42(2):318-327. doi: 10.1109/TPAMI.2018.2858826. Epub 2018 Jul 23.
5
Laboratory medicine in Africa: a barrier to effective health care.非洲的检验医学:有效医疗保健的障碍。
Clin Infect Dis. 2006 Feb 1;42(3):377-82. doi: 10.1086/499363. Epub 2005 Dec 20.
6
Rapid diagnostic tests for malaria parasites.疟原虫快速诊断检测
Clin Microbiol Rev. 2002 Jan;15(1):66-78. doi: 10.1128/CMR.15.1.66-78.2002.
8
The pathophysiology of malaria.疟疾的病理生理学。
Adv Parasitol. 1992;31:83-173. doi: 10.1016/s0065-308x(08)60021-4.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验