Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran.
Department of Nuclear Medicine, West China Hospital, Sichuan University, No. 37, Guoxue Alley, Chengdu, 610041, Sichuan, People's Republic of China.
J Nanobiotechnology. 2021 Aug 11;19(1):239. doi: 10.1186/s12951-021-00982-6.
BACKGROUND: Applied nanomaterials in targeted drug delivery have received increased attention due to tangible advantages, including enhanced cell adhesion and internalization, controlled targeted release, convenient detection in the body, enhanced biodegradation, etc. Furthermore, conjugation of the biologically active ingredients with the drug-containing nanocarriers (nanobioconjugates) has realized impressive opportunities in targeted therapy. Among diverse nanostructures, halloysite nanotubes (NHTs) with a rolled multilayer structure offer great possibilities for drug encapsulation and controlled release. The presence of a strong hydrogen bond network between the rolled HNT layers enables the controlled release of the encapsulated drug molecules through the modulation of hydrogen bonding either in acidic conditions or at higher temperatures. The latter can be conveniently achieved through the photothermal effect via the incorporation of plasmonic nanoparticles. RESULTS: The developed nanotherapeutic integrated natural halloysite nanotubes (HNTs) as a carrier; gold nanoparticles (AuNPs) for selective release; docetaxel (DTX) as a cytotoxic anticancer agent; human IgG1 sortilin 2D8-E3 monoclonal antibody (SORT) for selective targeting; and 3-chloropropyltrimethoxysilane as a linker for antibody attachment that also enhances the hydrophobicity of DTX@HNT/Au-SORT and minimizes DTX leaching in body's internal environment. HNTs efficiently store DTX at room temperature and release it at higher temperatures via disruption of interlayer hydrogen bonding. The role of the physical expansion and disruption of the interlayer hydrogen bonding in HNTs for the controlled DTX release has been studied by dynamic light scattering (DLS), electron microscopy (EM), and differential scanning calorimetry (DSC) at different pH conditions. HNT interlayer bond disruption has been confirmed to take place at a much lower temperature (44 °C) at low pH vs. 88 °C, at neutral pH thus enabling the effective drug release by DTX@HNT/Au-SORT through plasmonic photothermal therapy (PPTT) by light interaction with localized plasmon resonance (LSPR) of AuNPs incorporated into the HNT pores. CONCLUSIONS: Selective ovarian tumor targeting was accomplished, demonstrating practical efficiency of the designed nanocomposite therapeutic, DTX@HNT/Au-SORT. The antitumor activity of DTX@HNT/Au-SORT (apoptosis of 90 ± 0.3%) was confirmed by in vitro experiments using a caov-4 (ATCC HTB76) cell line (sortilin expression > 70%) that was successfully targeted by the sortilin 2D8-E3 mAb, tagged on the DTX@HNT/Au.
背景:由于具有明显的优势,靶向药物输送中的应用纳米材料受到了越来越多的关注,包括增强细胞黏附和内化、控制靶向释放、便于在体内检测、增强生物降解等。此外,将生物活性成分与载药纳米载体(纳米生物缀合物)偶联,为靶向治疗带来了令人瞩目的机遇。在各种纳米结构中,具有卷绕多层结构的海泡石纳米管(NHT)为药物封装和控制释放提供了巨大的可能性。卷曲的 HNT 层之间存在强氢键网络,可通过调节氢键在酸性条件下或在较高温度下实现封装药物分子的控制释放。后一种情况可以通过掺入等离子体纳米粒子的光热效应方便地实现。
结果:所开发的纳米治疗系统集成天然海泡石纳米管(HNTs)作为载体;金纳米颗粒(AuNPs)用于选择性释放;多西紫杉醇(DTX)作为细胞毒性抗癌剂;人 IgG1 分选蛋白 2D8-E3 单克隆抗体(SORT)用于选择性靶向;3-氯丙基三甲氧基硅烷作为抗体连接物,也增强了 DTX@HNT/Au-SORT 的疏水性,并最大限度地减少了 DTX 在体内环境中的浸出。HNTs 在室温下有效地储存 DTX,并在较高温度下通过破坏层间氢键释放 DTX。通过动态光散射(DLS)、电子显微镜(EM)和差示扫描量热法(DSC)在不同 pH 条件下研究了 HNTs 中物理膨胀和层间氢键破坏对 DTX 控制释放的作用。与中性 pH 相比,在较低 pH 下,HNT 层间键的破坏发生在更低的温度(44°C),从而使 DTX@HNT/Au-SORT 通过与掺入 HNT 孔中的 AuNPs 的局域等离子体共振(LSPR)的光相互作用实现有效的药物释放,通过等离子体光热治疗(PPTT)。
结论:通过使用成功靶向分选蛋白 2D8-E3 mAb 的 caov-4(ATCC HTB76)细胞系(分选蛋白表达>70%)进行体外实验,证实了设计的纳米复合治疗药物 DTX@HNT/Au-SORT 的卵巢肿瘤选择性靶向。DTX@HNT/Au-SORT(凋亡率为 90±0.3%)的抗肿瘤活性得到证实,该药物由与 DTX@HNT/Au 偶联的 2D8-E3 mAb 标记。
J Biomed Mater Res A. 2018-1-23
Mikrochim Acta. 2018-7-25
Int J Nanomedicine. 2020-12-3
Antibodies (Basel). 2023-3-3
Int J Mol Sci. 2023-3-2
J Mater Chem B. 2018-11-28
J Mater Chem B. 2018-6-7
Front Bioeng Biotechnol. 2020-2-18
J Control Release. 2020-5-10