文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

金纳米粒子负载于 2D8-E3 抗体偶联的埃洛石纳米管用于光热治疗的载药研究

Plasmonic photothermal release of docetaxel by gold nanoparticles incorporated onto halloysite nanotubes with conjugated 2D8-E3 antibodies for selective cancer therapy.

机构信息

Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran.

Department of Nuclear Medicine, West China Hospital, Sichuan University, No. 37, Guoxue Alley, Chengdu, 610041, Sichuan, People's Republic of China.

出版信息

J Nanobiotechnology. 2021 Aug 11;19(1):239. doi: 10.1186/s12951-021-00982-6.


DOI:10.1186/s12951-021-00982-6
PMID:34380469
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8359560/
Abstract

BACKGROUND: Applied nanomaterials in targeted drug delivery have received increased attention due to tangible advantages, including enhanced cell adhesion and internalization, controlled targeted release, convenient detection in the body, enhanced biodegradation, etc. Furthermore, conjugation of the biologically active ingredients with the drug-containing nanocarriers (nanobioconjugates) has realized impressive opportunities in targeted therapy. Among diverse nanostructures, halloysite nanotubes (NHTs) with a rolled multilayer structure offer great possibilities for drug encapsulation and controlled release. The presence of a strong hydrogen bond network between the rolled HNT layers enables the controlled release of the encapsulated drug molecules through the modulation of hydrogen bonding either in acidic conditions or at higher temperatures. The latter can be conveniently achieved through the photothermal effect via the incorporation of plasmonic nanoparticles. RESULTS: The developed nanotherapeutic integrated natural halloysite nanotubes (HNTs) as a carrier; gold nanoparticles (AuNPs) for selective release; docetaxel (DTX) as a cytotoxic anticancer agent; human IgG1 sortilin 2D8-E3 monoclonal antibody (SORT) for selective targeting; and 3-chloropropyltrimethoxysilane as a linker for antibody attachment that also enhances the hydrophobicity of DTX@HNT/Au-SORT and minimizes DTX leaching in body's internal environment. HNTs efficiently store DTX at room temperature and release it at higher temperatures via disruption of interlayer hydrogen bonding. The role of the physical expansion and disruption of the interlayer hydrogen bonding in HNTs for the controlled DTX release has been studied by dynamic light scattering (DLS), electron microscopy (EM), and differential scanning calorimetry (DSC) at different pH conditions. HNT interlayer bond disruption has been confirmed to take place at a much lower temperature (44 °C) at low pH vs. 88 °C, at neutral pH thus enabling the effective drug release by DTX@HNT/Au-SORT through plasmonic photothermal therapy (PPTT) by light interaction with localized plasmon resonance (LSPR) of AuNPs incorporated into the HNT pores. CONCLUSIONS: Selective ovarian tumor targeting was accomplished, demonstrating practical efficiency of the designed nanocomposite therapeutic, DTX@HNT/Au-SORT. The antitumor activity of DTX@HNT/Au-SORT (apoptosis of 90 ± 0.3%) was confirmed by in vitro experiments using a caov-4 (ATCC HTB76) cell line (sortilin expression > 70%) that was successfully targeted by the sortilin 2D8-E3 mAb, tagged on the DTX@HNT/Au.

摘要

背景:由于具有明显的优势,靶向药物输送中的应用纳米材料受到了越来越多的关注,包括增强细胞黏附和内化、控制靶向释放、便于在体内检测、增强生物降解等。此外,将生物活性成分与载药纳米载体(纳米生物缀合物)偶联,为靶向治疗带来了令人瞩目的机遇。在各种纳米结构中,具有卷绕多层结构的海泡石纳米管(NHT)为药物封装和控制释放提供了巨大的可能性。卷曲的 HNT 层之间存在强氢键网络,可通过调节氢键在酸性条件下或在较高温度下实现封装药物分子的控制释放。后一种情况可以通过掺入等离子体纳米粒子的光热效应方便地实现。

结果:所开发的纳米治疗系统集成天然海泡石纳米管(HNTs)作为载体;金纳米颗粒(AuNPs)用于选择性释放;多西紫杉醇(DTX)作为细胞毒性抗癌剂;人 IgG1 分选蛋白 2D8-E3 单克隆抗体(SORT)用于选择性靶向;3-氯丙基三甲氧基硅烷作为抗体连接物,也增强了 DTX@HNT/Au-SORT 的疏水性,并最大限度地减少了 DTX 在体内环境中的浸出。HNTs 在室温下有效地储存 DTX,并在较高温度下通过破坏层间氢键释放 DTX。通过动态光散射(DLS)、电子显微镜(EM)和差示扫描量热法(DSC)在不同 pH 条件下研究了 HNTs 中物理膨胀和层间氢键破坏对 DTX 控制释放的作用。与中性 pH 相比,在较低 pH 下,HNT 层间键的破坏发生在更低的温度(44°C),从而使 DTX@HNT/Au-SORT 通过与掺入 HNT 孔中的 AuNPs 的局域等离子体共振(LSPR)的光相互作用实现有效的药物释放,通过等离子体光热治疗(PPTT)。

结论:通过使用成功靶向分选蛋白 2D8-E3 mAb 的 caov-4(ATCC HTB76)细胞系(分选蛋白表达>70%)进行体外实验,证实了设计的纳米复合治疗药物 DTX@HNT/Au-SORT 的卵巢肿瘤选择性靶向。DTX@HNT/Au-SORT(凋亡率为 90±0.3%)的抗肿瘤活性得到证实,该药物由与 DTX@HNT/Au 偶联的 2D8-E3 mAb 标记。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4953/8359560/5295280be305/12951_2021_982_Fig12_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4953/8359560/9daf5da02b9a/12951_2021_982_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4953/8359560/adfaf5ae41da/12951_2021_982_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4953/8359560/ded7c03e8f25/12951_2021_982_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4953/8359560/74d244a36c37/12951_2021_982_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4953/8359560/25a96d2e0f9a/12951_2021_982_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4953/8359560/ffe2c91832da/12951_2021_982_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4953/8359560/3ab6d487381b/12951_2021_982_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4953/8359560/4a0bf1e28195/12951_2021_982_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4953/8359560/bb5fd7c82f6a/12951_2021_982_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4953/8359560/480c96f717dd/12951_2021_982_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4953/8359560/f797daddfe7b/12951_2021_982_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4953/8359560/5295280be305/12951_2021_982_Fig12_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4953/8359560/9daf5da02b9a/12951_2021_982_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4953/8359560/adfaf5ae41da/12951_2021_982_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4953/8359560/ded7c03e8f25/12951_2021_982_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4953/8359560/74d244a36c37/12951_2021_982_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4953/8359560/25a96d2e0f9a/12951_2021_982_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4953/8359560/ffe2c91832da/12951_2021_982_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4953/8359560/3ab6d487381b/12951_2021_982_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4953/8359560/4a0bf1e28195/12951_2021_982_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4953/8359560/bb5fd7c82f6a/12951_2021_982_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4953/8359560/480c96f717dd/12951_2021_982_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4953/8359560/f797daddfe7b/12951_2021_982_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4953/8359560/5295280be305/12951_2021_982_Fig12_HTML.jpg

相似文献

[1]
Plasmonic photothermal release of docetaxel by gold nanoparticles incorporated onto halloysite nanotubes with conjugated 2D8-E3 antibodies for selective cancer therapy.

J Nanobiotechnology. 2021-8-11

[2]
Fabrication and characterization of polymer-ceramic nanocomposites containing drug loaded modified halloysite nanotubes.

J Biomed Mater Res A. 2018-1-23

[3]
An effective strategy for development of docetaxel encapsulated gold nanoformulations for treatment of prostate cancer.

Sci Rep. 2021-2-2

[4]
pH and near-infrared active; chitosan-coated halloysite nanotubes loaded with curcumin-Au hybrid nanoparticles for cancer drug delivery.

Int J Biol Macromol. 2018-1-31

[5]
The tumor-targeting core-shell structured DTX-loaded PLGA@Au nanoparticles for chemo-photothermal therapy and X-ray imaging.

J Control Release. 2015-11-14

[6]
Enhanced docetaxel delivery using sterically stabilized RIPL peptide-conjugated nanostructured lipid carriers: In vitro and in vivo antitumor efficacy against SKOV3 ovarian cancer cells.

Int J Pharm. 2020-6-15

[7]
Halloysite nanotubes in analytical sciences and in drug delivery: A review.

Mikrochim Acta. 2018-7-25

[8]
Pharmacokinetics and in vitro/in vivo antitumor efficacy of aptamer-targeted Ecoflex nanoparticles for docetaxel delivery in ovarian cancer.

Int J Nanomedicine. 2018-1-23

[9]
Co-Delivery of Docetaxel and Curcumin via Nanomicelles for Enhancing Anti-Ovarian Cancer Treatment.

Int J Nanomedicine. 2020-12-3

[10]
Natural halloysite nanotubes /chitosan based bio-nanocomposite for delivering norfloxacin, an anti-microbial agent in sustained release manner.

Int J Biol Macromol. 2020-11-1

引用本文的文献

[1]
Plasmonic porous micro- and nano-materials based on Au/Ag nanostructures developed for photothermal cancer therapy: challenges in clinicalization.

Nanoscale Adv. 2023-11-27

[2]
3D and 4D printing hydroxyapatite-based scaffolds for bone tissue engineering and regeneration.

Heliyon. 2023-8-22

[3]
Mechanical, biocompatibility and antibacterial studies of gelatin/polyvinyl alcohol/silkfibre polymeric scaffold for bone tissue engineering.

Heliyon. 2023-6-5

[4]
Facile synthesis of pyrazolopyridine pharmaceuticals under mild conditions using an algin-functionalized silica-based magnetic nanocatalyst (Alg@SBA-15/FeO).

RSC Adv. 2023-4-3

[5]
Cutaneous Lymphoma and Antibody-Directed Therapies.

Antibodies (Basel). 2023-3-3

[6]
Halloysite Nanotubes and Sepiolite for Health Applications.

Int J Mol Sci. 2023-3-2

[7]
A magnetic X-band frequency microwave nanoabsorbent made of iron oxide/halloysite nanostructures combined with polystyrene.

RSC Adv. 2023-2-27

[8]
Effects of morphology and size of nanoscale drug carriers on cellular uptake and internalization process: a review.

RSC Adv. 2022-12-20

[9]
An effective antimicrobial complex of nanoscale β-cyclodextrin and ciprofloxacin conjugated to a cell adhesive dipeptide.

RSC Adv. 2022-12-15

[10]
Synergies in antimicrobial treatment by a levofloxacin-loaded halloysite and gold nanoparticles with a conjugation to a cell-penetrating peptide.

Nanoscale Adv. 2022-9-15

本文引用的文献

[1]
Borohydride stabilized gold-silver bimetallic nanocatalysts for highly efficient 4-nitrophenol reduction.

Nanoscale Adv. 2019-10-30

[2]
Amino modified magnetic halloysite nanotube supporting chloroperoxidase immobilization: enhanced stability, reusability, and efficient degradation of pesticide residue in wastewater.

Bioprocess Biosyst Eng. 2021-3

[3]
Multi-Stimuli Nanocomposite Therapeutic: Docetaxel Targeted Delivery and Synergies in Treatment of Human Breast Cancer Tumor.

Small. 2020-10

[4]
Antimicrobial therapeutic enhancement of levofloxacin via conjugation to a cell-penetrating peptide: An efficient sonochemical catalytic process.

J Pept Sci. 2020-10

[5]
A biodegradable polyphosphoester-functionalized poly(disulfide) nanocarrier for reduction-triggered intracellular drug delivery.

J Mater Chem B. 2018-11-28

[6]
In vitro and in vivo toxicity evaluation of halloysite nanotubes.

J Mater Chem B. 2018-11-28

[7]
Chemical modification of halloysite nanotubes for controlled loading and release.

J Mater Chem B. 2018-6-7

[8]
Nanoscale Drug Delivery Systems: From Medicine to Agriculture.

Front Bioeng Biotechnol. 2020-2-18

[9]
Cancer Therapy and Imaging Through Functionalized Carbon Nanotubes Decorated with Magnetite and Gold Nanoparticles as a Multimodal Tool.

Appl Biochem Biotechnol. 2020-7

[10]
Synthesis and functionalization of hyperbranched polymers for targeted drug delivery.

J Control Release. 2020-5-10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索